Decision Weights in Prospect Theory

Overview

Decision Weights in Prospect Theory

It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics, I became very interested in Prospect Theory (see Chapter 29 of Thinking, Fast and Slow). A very interesting part of Prospect theory is that it is not probabilities that are used in the calculation of expected value:

ev

Here, the q's are not the probabilities of outcome z, but it is from another probability measure called decision weights that humans actually use to weigh outcomes. Using a change of measure, we can observe the relationship between the actual probabilities and the decision weights:

cmg

My interest is in this change of measure.

The Setup

Suppose you have two choices:

  1. Lottery A: have a 1% chance to win $10 000,
  2. Lottery B: have a 99% chance to win $101

Which would you prefer?

Well, under the real world probabilty measure, these two choices are equal: .99 x 101 = .01 x 10000. Thus a rational agent would be indifferent to either option. But a human would have a preference: they would see one more valuable than the other. Thus:

inq

rewritten:

inq2

and dividing:

inq3

What's left to do is determine the direction of the first inequality.

Mechanical Turk it.

So I created combinations of probabilities and prizes, all with equal real-world expected value, and asked Turkers to pick which one they preferred. Example:

Imgur

Again, notice that .5 x $200 = .8 x $125 = $100. The original HIT data and the python scripts that generate are in the repo, plus the MTurk data. Each HIT received 10 turkers.

Note: The Turking cost me $88.40, if you'd like to give back over Gittip, that would be great =)

Note: I called the first choice Lottery A and the second choice Lottery B.

Analysis

Below is a slightly inappropriate heatmap of the choices people made. If everyone was rational, and hence indifferent to the two choices, the probabilities should hover around 0.5. This is clearly not the case.

Imgur

What else do we see here?

  1. As expected, people are loss averse: every point in the lower-diagonal is where lottery A had a high probability of success than B. The matrix shows that most points in here are greater than 50%, thus people chose the safer bet more often.
  2. The exception to the above point is the fact that 1% is choosen more favourably over 2%. This is an instance of the possibility effect. People are indifferent between 1% and 2%, as they are both so rare, thus will pick the one with larger payoff.

FAQ

  1. Why did I ask the Turkers to deeply imagine winning $50 dollars before answering the question? This was to offset a potential anchoring effect: if a Turkers first choice had prize $10 000, then any other prize would have looked pitiful, as the anchor had been set at $10 000. By having them imagine winning $50 (lower than any prize), then any prize they latter saw would appear better than this anchor.

  2. Next steps? I'd like to try this again, with more control over the Turkers (have a more diverse set of Turkers on it).

This data is mirrored and can be queried via API here

Owner
Cameron Davidson-Pilon
CEO of Pioreactor. Former Director of Data Science @Shopify. Author of Bayesian Methods for Hackers and DataOrigami.
Cameron Davidson-Pilon
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023