Decision Weights in Prospect Theory

Overview

Decision Weights in Prospect Theory

It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics, I became very interested in Prospect Theory (see Chapter 29 of Thinking, Fast and Slow). A very interesting part of Prospect theory is that it is not probabilities that are used in the calculation of expected value:

ev

Here, the q's are not the probabilities of outcome z, but it is from another probability measure called decision weights that humans actually use to weigh outcomes. Using a change of measure, we can observe the relationship between the actual probabilities and the decision weights:

cmg

My interest is in this change of measure.

The Setup

Suppose you have two choices:

  1. Lottery A: have a 1% chance to win $10 000,
  2. Lottery B: have a 99% chance to win $101

Which would you prefer?

Well, under the real world probabilty measure, these two choices are equal: .99 x 101 = .01 x 10000. Thus a rational agent would be indifferent to either option. But a human would have a preference: they would see one more valuable than the other. Thus:

inq

rewritten:

inq2

and dividing:

inq3

What's left to do is determine the direction of the first inequality.

Mechanical Turk it.

So I created combinations of probabilities and prizes, all with equal real-world expected value, and asked Turkers to pick which one they preferred. Example:

Imgur

Again, notice that .5 x $200 = .8 x $125 = $100. The original HIT data and the python scripts that generate are in the repo, plus the MTurk data. Each HIT received 10 turkers.

Note: The Turking cost me $88.40, if you'd like to give back over Gittip, that would be great =)

Note: I called the first choice Lottery A and the second choice Lottery B.

Analysis

Below is a slightly inappropriate heatmap of the choices people made. If everyone was rational, and hence indifferent to the two choices, the probabilities should hover around 0.5. This is clearly not the case.

Imgur

What else do we see here?

  1. As expected, people are loss averse: every point in the lower-diagonal is where lottery A had a high probability of success than B. The matrix shows that most points in here are greater than 50%, thus people chose the safer bet more often.
  2. The exception to the above point is the fact that 1% is choosen more favourably over 2%. This is an instance of the possibility effect. People are indifferent between 1% and 2%, as they are both so rare, thus will pick the one with larger payoff.

FAQ

  1. Why did I ask the Turkers to deeply imagine winning $50 dollars before answering the question? This was to offset a potential anchoring effect: if a Turkers first choice had prize $10 000, then any other prize would have looked pitiful, as the anchor had been set at $10 000. By having them imagine winning $50 (lower than any prize), then any prize they latter saw would appear better than this anchor.

  2. Next steps? I'd like to try this again, with more control over the Turkers (have a more diverse set of Turkers on it).

This data is mirrored and can be queried via API here

Owner
Cameron Davidson-Pilon
CEO of Pioreactor. Former Director of Data Science @Shopify. Author of Bayesian Methods for Hackers and DataOrigami.
Cameron Davidson-Pilon
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022