Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

Overview

py-self-organizing-maps

Simple implementation of self-organizing maps (SOMs)

A SOM is an unsupervised method for learning a mapping from a discrete neighborhood-based topology to a data space. This topology is implicitly given as a neighborhood graph. The SOM method assigns to each node of this graph a feature weight vector corresponding to a vector/position in the data space. Over the course of iterations, the node weights of this topology are learned to cover the distribution of samples in the dataset, providing a discrete map over the manifold of the data while encouraging local continuity through the topology. Through determining nearest neighbor node weights to a given data sample, the learned mapping is approximately invertible by basically performing quantization.

The code

This implementation is split into two major parts: An abstract Topology class and the SelfOrganizingMap class. The first one is basically an interface to define a neighborhood-based topology, hence it holds methods such as get_neighbors_of_node(...) or metric(...) or even abstract plotting methods such as plot_map(...). There is already one, arguably the simplest form of topology, implemented, namely regular one-, two- or three-dimensional grid structures as a GridTopology subclass.

The second class handles everything related to the iterative learning process and has an self.topology attribute which is an instance of the other class. It provides a simple fit() method for training and wrapper methods for plotting.

The plotting methods are currently somewhat specialised to the color space example scenario. Feel free to play around with other topologies and other visualisations.

How to use

from som import SelfOrganizingMap
from som import GridTopology

# create a random set of RGB color vectors
N = 1000
X = np.random.randint(0, 255, (N, 3)) # shape = (number_of_samples, feature_dim)

# create the SOM and fit it to the color vectors
topo = GridTopology(height=8, width=8, depth=8, d=2) # d is either 1 or 2 or 3
som = SelfOrganizingMap(topology=topo)
som.fit(X)

# plot the learned map, the nodes in the data space and the node differences
som.plot_map()
som.plot_nodes()
som.plot_differences_map()

Examples

TODOS

  • Initial commit
  • Add comments and documentation
  • Add hexagonal topology
  • Add other dataset examples (e.g. MNIST, face dataset, ...)
  • Use PyTorch for GPU
Owner
Jonas Grebe
Computer science master student @ TU Darmstadt
Jonas Grebe
Glue is a python project to link visualizations of scientific datasets across many files.

Glue Glue is a python project to link visualizations of scientific datasets across many files. Click on the image for a quick demo: Features Interacti

675 Dec 09, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
HW 2: Visualizing interesting datasets

HW 2: Visualizing interesting datasets Check out the project instructions here! Mean Earnings per Hour for Males and Females My first graph uses data

7 Oct 27, 2021
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
A set of useful perceptually uniform colormaps for plotting scientific data

Colorcet: Collection of perceptually uniform colormaps Build Status Coverage Latest dev release Latest release Docs What is it? Colorcet is a collecti

HoloViz 590 Dec 31, 2022
University of Missouri - Kansas City: CS451R: Capstone

CS451RC University of Missouri - Kansas City: CS451R: Capstone Installation cd git clone https://github.com/ala2q6/CS451RC.git cd CS451RC pip3 instal

Alex Arbuckle 1 Nov 17, 2021
An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden.

sweden-rent-dashboard An interactive dashboard built with python that enables you to visualise how rent prices differ across Sweden. The dashboard/web

Rory Crean 5 Dec 19, 2021
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
view cool stats related to your discord account.

DiscoStats cool statistics generated using your discord data. How? DiscoStats is not a service that breaks the Discord Terms of Service or Community G

ibrahim hisham 5 Jun 02, 2022
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022