Moscow DEG 2021 elections plots

Overview

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г.

Описание

Скрипты в данном репозитории позволяют собственноручно построить графики распределения голосов избирателей по времени на основе публичных данных от системы Дистанционного Электронного Голосования Москвы для выборов в Государственную Думу 2021 года. Получаемые графики не учитывают переголосования, так как на настощий момент на основе публичных данных разделить бюллетени проголосовавшие единожды и переголосовавшие невозможно. Дополнительно можно построить распределение электронной "явки" по номеру блока регистрации избирателей, где также наблюдаются аномалии.

Для кого предназначено это руководство

Для людей которые хотели бы собственноручно проанализировать публично доступные данные о дистанционном голосовании, но не обладают достаточным техническим уровнем или желанием разбираться для полностью самостоятельного разворачивания базы данных. Соответственно инструкция написана максимально подробно, насколько это возможно. Руководство разделено на установку (выполняется однажды) и собственно построение графиков.

Установка

Система

Скрипты для построения графиков не должны зависеть от ОС, но на настоящий момент протестированы только под Linux. Установочные скрипты и инструкции рассчитаны на использование дистрибутивов Debian или Ubuntu. Для работы из под Windows или macOS (а для повышения безопасности и под Linux) рекомендуется воспользоваться виртуальной машиной с Ubuntu 20.04. Подойдёт например VirtualBox с вот этим образом. Установка VirtualBox достаточно проста, при необходимости инструкцию легко найти. Для подключения образа достаточно его распаковать, выполнить "Файл"-"Импорт конфигураций" и выбрать распакованный файл ova. После завершения импорта в настройках созданной виртуалки в разделе "Сеть" рекомендуется сменить тип подключения на NAT, при наличии достаточных ресурсов рекомендуется увеличить объём оперативной памяти до 8 ГБайт, остальные параметры можно оставить по-умолчанию. Системный пароль в виртуалке по ссылке выше - "ubuntu".

Клонирование репозитория и получение SQL-дампа

Для получения файлов из данного репозитория необходимо установить git и выполнить клонирование. Для этого необходимо открыть терминал (в Ubuntu нажать Activities, набрать term и нажать Enter) и выполнить в нем:

sudo apt update && sudo apt install -y git
git clone https://github.com/50000-Quaoar/election2021_msk

Для работы также понадобится дамп базы данных голосования, скачать который можно с сайта https://observer.mos.ru . Например данные по одномандатным округам доступны на этой странице, кнопка "Скачать sql dump". Если используете виртуальную машину - скачивайте сразу из неё. Данные по партийным спискам здесь.

Update: observer.mos.ru в последнее время тормозит и дампы могут скачаться битыми. Правильные дампы для голосований в Госдуму имеют в запакованном состоянии размер больше 3 ГБайт. Точно корректность дампа можно проверить следующим образом (займет несколько минут):

gunzip -kc observer-20210927_233000.sql.gz | sha256sum

SHA256 чексумма для распакованного дампа одномандатников: af3ca1f9002a7bc92065fd696e642fca84691dff7a3d8ee5165c009513082c66, а для партийных списков: 63f0cea15928ed31b1dceaaa74d2651fd901be17624bd2435ea925037fa3abec . В теории дампы после 19.09 меняться не должны, соответственно их чексуммы тоже.

Установка зависимостей и импорт базы данных

Для установки зависимостей выполнить в терминале:

cd election2021_msk/install
./install_ubuntu.sh

Для импорта базы данных в том же терминале исполняем:

./import_db.sh /home/ubuntu/Downloads/observer-20210921_143000.sql.gz v2021_om

, где /home/ubuntu/Downloads/observer-20210921_143000.sql.gz - путь до скачанного дампа базы данных, а v2021_om - желаемое имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки импорт может занять от нескольких минут до ~2 часов. Терминал не закрываем. Если помимо одномандатников есть желание анализировать и другие голосования (партийные списки, Мосгордума), то необходимо эту операцию повторить с другим именем файла и названием базы.

Дорасшифровывание бюллетеней

В публично доступной на https://observer.mos.ru базе данных расшифровывание бюллетеней не была произведено до конца (подробности см. например в статье на Хабре на тему ДЭГ). Чтобы исправить это прискорбное недоразумение необходимо выполнить:

cd ..
./decrypt_ballots.py --dbname v2021_om

, где v2021_om - выбранное имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки расшифровывание может занять вплоть до нескольких часов. После завершения расшифровки база данных готова к использованию и можно переходить к построению графиков и анализу данных. Строить графики можно и без дорасшифровывания или не дожидаясь его завершения, но тогда часть голосов не будет учтена. Если анализируете несколько баз, то надо дорасшифровывать их все.

Построение графиков

Для построения графика распределения голосов по времени достаточно вызвать в терминале:

./time_plot.py -c plot-config.json --dbname v2021_om

, где plot-config.json - JSON файл с конфигурацией желаемого графика (по-умолчанию plot-config.json), а v2021_om - название базы данных. Полный help можно получить выполнив:

./time_plot.py -h

Для построения графика явки в зависимости от номера блока регистрации избирателей:

./turnout_plot.py --dbname v2021_om

, где v2021_om - название базы данных, других параметров не требуется.

Выбор данных для построения графика распределения по времени

Параметры графиков задаются в виде текстовых JSON-файлов. Параметр minutes_in_bin задаёт число минут на каждую точку по оси X (рекомендуемые значения от 10 до 60). Параметр minutes_per_axis_tick - частоту подписей времени по X. Параметр percentage выбирает отображать ли на графике абсолютное количество голосов (false) или процент голосов в данном временном интервале каждого отдельного кандидата от всех кандидатов на графике (true). Параметр integrate позволяет отобразить сумму (true) всех голосов за кандидата к текущему моменту.

Наконец наиболее важный параметр candidates_to_plot задаёт список (в квадратных скобках) ID кандидатов, которых необходимо отобразить на графике. ID интересующего вас кандидата можно узнать запустив time_plot.py с опцией -l номер_округа. Например:

./time_plot.py -l 198

выведет список кандидатов в 198 округе, а для получения полного списка используйте опцию -l 0.

Время построения каждого графика обычно не превышает пары минут.

Примеры JSON-файлов

В репозитории представлено несколько JSON файлов для примера графиков по одномандатным округам: 198_perc.json - процентное распределение голосов по времени за всех кандидатов по 198 округу; 198_integral.json - полное количество голосов к ка времени за всех кандидатов по 198 округу; 208_abs.json - распределение голосов по времени за всех кандидатов по 208 округу; sobyanin_list.json - распределение голосов по времени за всех "административных" кандидатов по всем округам Москвы, позволяет проследить схожесть динамики набора голосов, в частности т.н. "перерыв на обед" в воскресенье днем; obed.json - распределение голосов по времени за трех административных кандидатов по разным округам и трех их основных конкурентов, позволяет проследить отличие в динамике числа голосов за административных и опозиционных кандидатов, в особенности в воскресенье (стремительное набор голосов за административных в 6:30 утра, отсутствие "обеда" у опозиционных голосов и резкое снижение административных после 14:30); party.json - распределение голосов по времени по партийным спискам, обед у ЕР присутствует;

Примеры графиков

Графики для конфигураций описанных выше, некоторые приближены для наглядности.

198_perc.json

alt text

198_integral.json

alt text

208_abs.json

alt text

sobyanin_list.json

alt text

obed.json

alt text

party.json

alt text

198_perc.json нормированный на официальные результаты

alt text

turnout_plot.py для одномандатных округов

alt text

TODO

  • Добавить построение других типов графиков.
  • Ускорить расшифрование.
  • Замечания и вопросы приветствуются :).
finds grocery stores and stuff next to route (gpx)

Route-Report Route report is a command-line utility that can be used to locate points-of-interest near your planned route (gpx). The results are based

Clemens Mosig 5 Oct 10, 2022
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

ehne 3 Feb 12, 2022
Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
Create a visualization for Trump's Tweeted Words Using Python

Data Trump's Tweeted Words This plot illustrates twitter word occurences. We already did the coding I needed for this plot, so I was very inspired to

7 Mar 27, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
A TileDB backend for xarray.

TileDB-xarray This library provides a backend engine to xarray using the TileDB Storage Engine. Example usage: import xarray as xr dataset = xr.open_d

TileDB, Inc. 14 Jun 02, 2021
nvitop, an interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management

An interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management.

Xuehai Pan 1.3k Jan 02, 2023
Certificate generating and sending system written in Python.

Certificate Generator & Sender How to use git clone https://github.com/saadhaxxan/Certificate-Generator-Sender.git cd Certificate-Generator-Sender Add

Saad Hassan 11 Dec 01, 2022
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
Flipper Zero documentation repo

Flipper Zero Docs Participation To fix a bug or add something new to this repository, you need to open a pull-request. Also, on every page of the site

Flipper Zero (All Repositories will be public soon) 114 Dec 30, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. 📈 🐶 ❤️

Kyle Verhoog 2 Nov 21, 2021
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Code repository Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python by Peter Bruce, Andrew Bruce, and Peter Gedeck Pub

1.7k Jan 04, 2023
Active Transport Analytics Model (ATAM) is a new strategic transport modelling and data visualization framework for Active Transport as well as emerging micro-mobility modes

{ATAM} Active Transport Analytics Model Active Transport Analytics Model (“ATAM”) is a new strategic transport modelling and data visualization framew

Peter Stephan 0 Jan 12, 2022
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023