A python package to perform same transformation to coco-annotation as performed on the image.

Overview

coco-transform-util

A python package to perform same transformation to coco-annotation as performed on the image.

Installation

Way 1

$ git clone https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
$ cd coco-transform-util
$ python3 setup.py install

Way 2

$ pip3 install git+https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
<<< Username: <[email protected]>
<<< Password: <personal access token or SSH key>

Personal Access token looks like this 83b318cg875a5g302e5fdaag74afc8ceb6a91a2e.

Reference: How to generate Personal Access token

Check installation

import ctu
print(ctu.__version__)

Benefits and Use Cases

  1. Faster Model Training: Decrease the size of images and accordingly its annotation will be changed using this.
  2. Flexibility: Rescaling of images and annotations to meet the need of Model/Framework.
  3. Cost Saving: Lesser Computation requirement as images can be downscaled.
  4. Interpretability: Annotation Visualization is also a part of this package.
  5. Data Augmentation: <more practical in future>
  6. Ability to handle other cases: Added Functionality such as cropping or padding of the annotation can help in multiple other cases such as:
    • cropping out each object image & annotation from an original image
    • cropping unnecessary area to zoom in on some particular area.
    • converting images to 1:1 aspect ratio by using padding and/or cropping.

How to use it?

Core

There are four core modules inside that helps in performing operations on COCO Annotation. These can imported as shown below:

from ctu import WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize, AggreagateCoco  

It's recommended that you have look at samples/example_core_modules.py to understand and explore how to use these.

Wrapper

Making use of wrappers can also come in handly to perform multiple operations in a much simpler and interpretable manner using the functions provided below:

from ctu import (
    sample_modif_step_di, get_modif_imag, get_modif_coco_annotation, 
    accept_and_process_modif_di, ImgTransform, Visualize
)

It's recommended that you have look at samples/example_highlevel_function.py to understand and explore how to use these.

Some sample data has also been provided with this package at example_data/* to explore these functionalities.

Demo / Sample

A sample HTML created from Jupyter-Notebook, contating some sample results has been added to the path samples/Demo-SampleOutput.html.

Version History

  • v0.1: Core Modules: WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize. External Dependency on AMLEET package.
  • v0.2: Removed the dependency on AMLEET package. Develop Core Module: AggreagateCoco. Addition of field "area" under "annotations" in coco.
  • v0.3: Completed: Remove the out of frame coordinates in annotation. Update & add fields in "annotation" > "images". Ability to create transparent and general mask create_mask. In Development: Ability to export transformed image, mask and annotation per image wise and as a whole too.

Future

  • Update the image fields in "images" key. (done)
  • Crop out the annotation which are out-of-frame based on recent image shape. (done)
  • Annotation Visualization + Mask creation can become a core feature to this library. (done)
  • Rotate 90 degree left/right.
  • Flip horizontally or vertically.
  • COCO to other annotation format can also be a feature to this package.
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022