Meta-learning for NLP

Related tags

Deep Learningmetanlp
Overview

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks

Code for training the meta-learning models and fine-tuning on downstream tasks. If you use this code please cite the paper.

Paper: Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks

@inproceedings{bansal2020self,
  title={Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks},
  author={Bansal, Trapit and Jha, Rishikesh and Munkhdalai, Tsendsuren and McCallum, Andrew},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={522--534},
  year={2020}
}

Trained Models

Dependencies

  • Python version 3.6.6 or higher
  • Tensorflow version 1.12.0 (higher versions might not work)
  • Numpy 1.16.4 or higher
  • six 1.12.0

pip install -r requirements.txt should install required depedencies. It is recommended to use a conda environment and make sure to use the pip installed in the environment.

Fine-Tuning

A script is provided to run fine-tuning for a target task, by default it runs fine-tuning on CoNLL. The script will download all necessary data and models, note that in case downloads fail please download the files manually using the links.

Fine-tuning runs on a single GPU and typically takes a few minutes.

Run the script as: ./run_finetune.sh

Modify the following parameters in run_finetune.sh to run on a different task, or a different k-shot, or a different file split for the task:

  • TASK_NAME: should be one of: airline, conll, disaster, emotion, political_audience, political_bias, political_message, rating_books, rating_dvd, rating_electronics, rating_kitchen, restaurant, scitail, sentiment_books, sentiment_dvd, sentiment_electronics, sentiment_kitchen
  • DATA_DIR: path to data directory (eg., data/leopard-master/data/tf_record/${TASK_NAME})
  • F: file train split id, should be in [0, 9]
  • K: which k-shot experiment to run, should be in {4, 8, 16, 32}
  • N: number of classes in the task (see paper if not known)

So, the fine-tuning run command to run on a particular split for a task is: ./run_finetune.sh TASK_NAME F K N

To change the output directory or other arguments, edit the corresponding arguments in run_finetune.sh

Hyper-parameters for Hybrid-SMLMT

  • K = 4:
    --num_train_epochs=150*N
    --train_batch_size=4*N

  • K = 8:
    --num_train_epochs=175*N
    --train_batch_size=8*N

  • K = 16:
    --num_train_epochs=200*N
    --train_batch_size=4*N

  • K = 32:
    --num_train_epochs=100*N
    --train_batch_size=8*N

Data for fine-tuning

The data for the fine-tuning tasks can be downloaded from https://github.com/iesl/leopard

Fine-tuning on other tasks

To run fine-tuning on a different task than provided with the code, you will need to set up the train and test data for the task in a tf_record file, similar to the data for the provided tasks.

The features in the tf_record are:

name_to_features = {
      "input_ids": tf.FixedLenFeature([128], tf.int64),
      "input_mask": tf.FixedLenFeature([128], tf.int64),
      "segment_ids": tf.FixedLenFeature([128], tf.int64),
      "label_ids": tf.FixedLenFeature([], tf.int64),
  }

where:

  • input_ids: the input sequence tokenized using the BERT tokenizer
  • input_mask: mask of 0/1 corresponding to the input_ids
  • segment_ids: 0/1 segment ids following BERT
  • label_ids: classification label

Note that the above features are same as that used in the code of BERT fine-tuning for classification, so code in the BERT github repository can be used for creating the tf_record files.

The followiing arguments to run_classifier_pretrain.py need to be set:

  • task_eval_files: train_tf_record, eval_tf_record
    • where train_tf_record is the train file for the task and eval_tf_record is the test file
  • test_num_labels: number of classes in the task

LEOPARD Fine-tuning

Hyper-parameters for the LEOPARD model:

  • K = 4:
    --num_train_epochs=150*N
    --train_batch_size=2*N

  • K = 8:
    --num_train_epochs=200*N --train_batch_size=2*N

  • K = 16:
    --num_train_epochs=200*N --train_batch_size=4*N

  • K = 32:
    --num_train_epochs=50*N --train_batch_size=2*N

In addition, set the argument warp_layers=false for fine-tuning the LEOPARD model.

Meta-Training

This requires large training time and typically should be run on multiple GPU.

SMLMT data file name should begin with "meta_pretain" and end with the value of N for the tasks in that file (on file per N), for example "meta_pretrain_3.tf_record" for 3-way tasks. The training code will take train_batch_size many examples at a time starting from the beginning of the files (without shuffling) and treat that as one task for training.

Meta-training can be run using the following command:

python run_classifier_pretrain.py \
    --do_train=true \
    --task_train_files=${TRAIN_FILES} \
    --num_train_epochs=1 \
    --save_checkpoints_steps=5000 \
    --max_seq_length=128 \
    --task_eval_files=${TASK_EVAL_FILES} \
    --tasks_per_gpu=1 \
    --num_eval_tasks=1 \
    --num_gpus=4 \
    --learning_rate=1e-05 \
    --train_lr=1e-05 \
    --keep_prob=0.9 \
    --attention_probs_dropout_prob=0.1 \
    --hidden_dropout_prob=0.1 \
    --SGD_K=1 \
    --meta_batchsz=80 \
    --num_batches=8 \
    --train_batch_size=90 \
    --min_layer_with_grad=0 \
    --train_word_embeddings=true \
    --use_pooled_output=true \
    --output_layers=2 \
    --update_only_label_embedding=true \
    --use_euclidean_norm=false \
    --label_emb_size=256 \
    --stop_grad=true \
    --eval_batch_size=90 \
    --eval_examples_per_task=2000 \
    --is_meta_sgd=true \
    --data_sqrt_sampling=true \
    --deep_set_layers=0 \
    --activation_fn=tanh \
    --clip_lr=true \
    --inner_epochs=1 \
    --warp_layers=true \
    --min_inner_steps=5 \
    --average_query_every=3 \
    --weight_query_loss=true \
    --output_dir=${output_dir} \
    --pretrain_task_weight=0.5

References:

Code is based on the public repository: https://github.com/google-research/bert

Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805, 2018.

Owner
IESL
IESL
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022