Meta-learning for NLP

Related tags

Deep Learningmetanlp
Overview

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks

Code for training the meta-learning models and fine-tuning on downstream tasks. If you use this code please cite the paper.

Paper: Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks

@inproceedings{bansal2020self,
  title={Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks},
  author={Bansal, Trapit and Jha, Rishikesh and Munkhdalai, Tsendsuren and McCallum, Andrew},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={522--534},
  year={2020}
}

Trained Models

Dependencies

  • Python version 3.6.6 or higher
  • Tensorflow version 1.12.0 (higher versions might not work)
  • Numpy 1.16.4 or higher
  • six 1.12.0

pip install -r requirements.txt should install required depedencies. It is recommended to use a conda environment and make sure to use the pip installed in the environment.

Fine-Tuning

A script is provided to run fine-tuning for a target task, by default it runs fine-tuning on CoNLL. The script will download all necessary data and models, note that in case downloads fail please download the files manually using the links.

Fine-tuning runs on a single GPU and typically takes a few minutes.

Run the script as: ./run_finetune.sh

Modify the following parameters in run_finetune.sh to run on a different task, or a different k-shot, or a different file split for the task:

  • TASK_NAME: should be one of: airline, conll, disaster, emotion, political_audience, political_bias, political_message, rating_books, rating_dvd, rating_electronics, rating_kitchen, restaurant, scitail, sentiment_books, sentiment_dvd, sentiment_electronics, sentiment_kitchen
  • DATA_DIR: path to data directory (eg., data/leopard-master/data/tf_record/${TASK_NAME})
  • F: file train split id, should be in [0, 9]
  • K: which k-shot experiment to run, should be in {4, 8, 16, 32}
  • N: number of classes in the task (see paper if not known)

So, the fine-tuning run command to run on a particular split for a task is: ./run_finetune.sh TASK_NAME F K N

To change the output directory or other arguments, edit the corresponding arguments in run_finetune.sh

Hyper-parameters for Hybrid-SMLMT

  • K = 4:
    --num_train_epochs=150*N
    --train_batch_size=4*N

  • K = 8:
    --num_train_epochs=175*N
    --train_batch_size=8*N

  • K = 16:
    --num_train_epochs=200*N
    --train_batch_size=4*N

  • K = 32:
    --num_train_epochs=100*N
    --train_batch_size=8*N

Data for fine-tuning

The data for the fine-tuning tasks can be downloaded from https://github.com/iesl/leopard

Fine-tuning on other tasks

To run fine-tuning on a different task than provided with the code, you will need to set up the train and test data for the task in a tf_record file, similar to the data for the provided tasks.

The features in the tf_record are:

name_to_features = {
      "input_ids": tf.FixedLenFeature([128], tf.int64),
      "input_mask": tf.FixedLenFeature([128], tf.int64),
      "segment_ids": tf.FixedLenFeature([128], tf.int64),
      "label_ids": tf.FixedLenFeature([], tf.int64),
  }

where:

  • input_ids: the input sequence tokenized using the BERT tokenizer
  • input_mask: mask of 0/1 corresponding to the input_ids
  • segment_ids: 0/1 segment ids following BERT
  • label_ids: classification label

Note that the above features are same as that used in the code of BERT fine-tuning for classification, so code in the BERT github repository can be used for creating the tf_record files.

The followiing arguments to run_classifier_pretrain.py need to be set:

  • task_eval_files: train_tf_record, eval_tf_record
    • where train_tf_record is the train file for the task and eval_tf_record is the test file
  • test_num_labels: number of classes in the task

LEOPARD Fine-tuning

Hyper-parameters for the LEOPARD model:

  • K = 4:
    --num_train_epochs=150*N
    --train_batch_size=2*N

  • K = 8:
    --num_train_epochs=200*N --train_batch_size=2*N

  • K = 16:
    --num_train_epochs=200*N --train_batch_size=4*N

  • K = 32:
    --num_train_epochs=50*N --train_batch_size=2*N

In addition, set the argument warp_layers=false for fine-tuning the LEOPARD model.

Meta-Training

This requires large training time and typically should be run on multiple GPU.

SMLMT data file name should begin with "meta_pretain" and end with the value of N for the tasks in that file (on file per N), for example "meta_pretrain_3.tf_record" for 3-way tasks. The training code will take train_batch_size many examples at a time starting from the beginning of the files (without shuffling) and treat that as one task for training.

Meta-training can be run using the following command:

python run_classifier_pretrain.py \
    --do_train=true \
    --task_train_files=${TRAIN_FILES} \
    --num_train_epochs=1 \
    --save_checkpoints_steps=5000 \
    --max_seq_length=128 \
    --task_eval_files=${TASK_EVAL_FILES} \
    --tasks_per_gpu=1 \
    --num_eval_tasks=1 \
    --num_gpus=4 \
    --learning_rate=1e-05 \
    --train_lr=1e-05 \
    --keep_prob=0.9 \
    --attention_probs_dropout_prob=0.1 \
    --hidden_dropout_prob=0.1 \
    --SGD_K=1 \
    --meta_batchsz=80 \
    --num_batches=8 \
    --train_batch_size=90 \
    --min_layer_with_grad=0 \
    --train_word_embeddings=true \
    --use_pooled_output=true \
    --output_layers=2 \
    --update_only_label_embedding=true \
    --use_euclidean_norm=false \
    --label_emb_size=256 \
    --stop_grad=true \
    --eval_batch_size=90 \
    --eval_examples_per_task=2000 \
    --is_meta_sgd=true \
    --data_sqrt_sampling=true \
    --deep_set_layers=0 \
    --activation_fn=tanh \
    --clip_lr=true \
    --inner_epochs=1 \
    --warp_layers=true \
    --min_inner_steps=5 \
    --average_query_every=3 \
    --weight_query_loss=true \
    --output_dir=${output_dir} \
    --pretrain_task_weight=0.5

References:

Code is based on the public repository: https://github.com/google-research/bert

Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805, 2018.

Owner
IESL
IESL
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022