🤗 Paper Style Guide

Overview

🤗 Paper Style Guide

(Work in progress, send a PR!)

Libraries to Know

General

  • When in doubt use sections -> Introduction, Background, Model, Training, Methods, Results, Discussion, Conclusion.
  • Tables should always follow this guide
  • Tables / Figures should always float. Never inline in the text.
  • When using natbib, \citet is for when the citation is a noun, and \citep is for when it is at the end.
  • Captions should be short but fully self-explanatory of the columns / rows. They should not use 1st person.
  • Abstracts should be 1 paragraph. When in doubt -> Context, Problem, Idea 1, Idea 2, Results.
  • Section titles should be starting-caps.
  • The goal of related work is not just to list papers, but to explicitly make claims as to how your work differs from each one.
  • Figures should have a white background and large fonts. Do not screenshot! Generate a high-res, pdf output.
  • Use present tense (almost) everywhere.
  • You do not need a summary paragraph at the end of your intro.
  • All empirical results must be in a table or figure.
  • Methods section should not introduce new modeling. Enumerate the tasks, baselines, hyperparameters.
  • Results section should not introduce new tasks or models. Summarize the tables.
  • Any non-trivial notation should be introduced as early possible. Ideally background.
  • 8 pages is an extremely hard limit.
  • Always use `` '' for quotes not " ".
  • Use bold sparingly. Opt for italics for new technical terms.

Small Tips

  • Turn off \usepackage[review]{emnlp} to \usepackage[]{emnlp} while editing to fix overleaf linking.
  • Use \newcommand{\todo}[1]{{\small\color{red}{\bf [*** Todo: #1]}}} for inline comments.

Links

Exercises

  • What are the 3 contributions of the paper?
  • Do my experiments convincingly prove each of these are true?
  • Can I cut anything that does not satisfy these?
  • Would someone who has not read a paper in 2 years understand what is happening?
Owner
Hugging Face
The AI community building the future.
Hugging Face
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022