[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

Related tags

Deep LearningSSUL
Overview

SSUL - Official Pytorch Implementation (NeurIPS 2021)

SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning
Sungmin Cha1,2*, Beomyoung Kim3*, YoungJoon Yoo2,3, Taesup Moon1
* Equal contribution

1 Department of Electrical and Computer Engineering, Seoul National University
2 NAVER AI Lab
3 Face, NAVER Clova

NeurIPS 2021

Paper

Abtract

This paper introduces a solid state-of-the-art baseline for a class-incremental semantic segmentation (CISS) problem. While the recent CISS algorithms utilize variants of the knowledge distillation (KD) technique to tackle the problem, they failed to fully address the critical challenges in CISS causing the catastrophic forgetting; the semantic drift of the background class and the multi-label prediction issue. To better address these challenges, we propose a new method, dubbed SSUL-M (Semantic Segmentation with Unknown Label with Memory), by carefully combining techniques tailored for semantic segmentation. Specifically, we claim three main contributions. (1) defining unknown classes within the background class to help to learn future classes (help plasticity), (2) freezing backbone network and past classifiers with binary cross-entropy loss and pseudo-labeling to overcome catastrophic forgetting (help stability), and (3) utilizing tiny exemplar memory for the first time in CISS to improve both plasticity and stability. The extensively conducted experiments show the effectiveness of our method, achieving significantly better performance than the recent state-of-the-art baselines on the standard benchmark datasets. Furthermore, we justify our contributions with thorough ablation analyses and discuss different natures of the CISS problem compared to the traditional class-incremental learning targeting classification.

Experimental Results (mIoU all)

Method VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 19-1 (2 tasks) VOC 15-5 (2 tasks) VOC 5-1 (16 tasks) VOC 2-1 (19 tasks)
MiB 12.65 29.29 46.71 69.15 70.08 10.03 9.88
PLOP 30.45 54.64 18.68 73.54 70.09 6.46 4.47
SSUL 59.25 67.61 56.89 75.44 71.22 48.65 38.32
SSUL-M 64.12 71.37 58.37 76.49 73.02 55.11 44.74
Method ADE 100-5 (11 tasks) ADE 100-10 (6 tasks) ADE 100-50 (2 tasks) ADE 50-50 (3 tasks)
MiB 25.96 29.24 32.79 29.31
PLOP 28.75 31.59 32.94 30.40
SSUL 32.48 33.10 33.58 29.56
SSUL-M 34.56 34.46 34.37 29.77

Getting Started

Requirements

  • torch>=1.7.1
  • torchvision>=0.8.2
  • numpy
  • pillow
  • scikit-learn
  • tqdm
  • matplotlib

Datasets

data_root/
    --- VOC2012/
        --- Annotations/
        --- ImageSet/
        --- JPEGImages/
        --- SegmentationClassAug/
        --- saliency_map/
    --- ADEChallengeData2016
        --- annotations
            --- training
            --- validation
        --- images
            --- training
            --- validation

Download SegmentationClassAug and saliency_map

Class-Incremental Segmentation Segmentation on VOC 2012

DATA_ROOT=your_dataset_root_path
DATASET=voc
TASK=15-1 # [15-1, 10-1, 19-1, 15-5, 5-3, 5-1, 2-1, 2-2]
EPOCH=50
BATCH=32
LOSS=bce_loss
LR=0.01
THRESH=0.7
MEMORY=100 # [0 (for SSUL), 100 (for SSUL-M)]

python main.py --data_root ${DATA_ROOT} --model deeplabv3_resnet101 --gpu_id 0,1 --crop_val --lr ${LR} --batch_size ${BATCH} --train_epoch ${EPOCH} --loss_type ${LOSS} --dataset ${DATASET} --task ${TASK} --overlap --lr_policy poly --pseudo --pseudo_thresh ${THRESH} --freeze --bn_freeze --unknown --w_transfer --amp --mem_size ${MEMORY}

Class-Incremental Segmentation Segmentation on ADE20K

DATA_ROOT=your_dataset_root_path
DATASET=ade
TASK=100-5 # [100-5, 100-10, 100-50, 50-50]
EPOCH=100
BATCH=24
LOSS=bce_loss
LR=0.05
THRESH=0.7
MEMORY=300 # [0 (for SSUL), 300 (for SSUL-M)]

python main.py --data_root ${DATA_ROOT} --model deeplabv3_resnet101 --gpu_id 0,1 --crop_val --lr ${LR} --batch_size ${BATCH} --train_epoch ${EPOCH} --loss_type ${LOSS} --dataset ${DATASET} --task ${TASK} --overlap --lr_policy warm_poly --pseudo --pseudo_thresh ${THRESH} --freeze --bn_freeze --unknown --w_transfer --amp --mem_size ${MEMORY}

Qualitative Results

Acknowledgement

Our implementation is based on these repositories: DeepLabV3Plus-Pytorch, Torchvision.

License

SSUL
Copyright 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022