COVID-19 Chatbot with Rasa 2.0: open source conversational AI

Overview

COVID-19 Chatbot with Rasa 2.0: open source conversational AI

Table of Contents

  1. introduction
  2. COVID-19 data
  3. Conversational flow
  4. Implementation
  5. Installation
  6. References

introduction

As natural language processing (NLP) technology and chatbot systems over the past few years have evolved quickly, also the usefulness of chatbots has increased. The motivation of chatbots is productivity; they have an instant access to information they refer to and are efficient in assisting users. (Brandtzaeg, 2017, Why people use chatbots. COVID-19 chatbot is an excellent use case example for the technology.

The content of a chatbot consists of the personality, conversation flows and the information it can deliver to the user. Personality is created by interactions and responses and by acting differently in different situations. These responses should be designed so that it maximises the engagement between the bot and the user (Katz, 2019, The Ultimate Guide to chatbot personality, Chatbots Magazine). The COVID-19 chatbot described here aims to use these principles, however due to the efforts required, in a rather minimalistic way leaving plenty of room for future improvements. e.g. in the area of how to handle chitchat.

COVID-19 data

The COVID-19 data format chosen here is defined by (https://api.rootnet.in/covid19-in/stats/history), which provides COVID-19 data freely for developers.

Conversation Flow

The conversation is initiated by the end-user. A greeting or a goodbye should reset any prior assumptions or knowledge collected by the bot during previous interactions. When time or COVID-19 detail are not contained in the query, the bot shall report the current and generic COVID-19 conditions. When the city is not provided in the query, the bot shall request for it. Any further specifics in the query should be answered in more detail if information is available.

3 Major queries that a user can perform apart from greeting,goodbye etc:

As this is a demo modal of how to integrate API in rasa. So I have designed this COVID-19 bot to answer limited queries as follows:

Query1

user can ask for current confirmed covid cases of any city in India

Examples:

-what is the number of cases currently in Delhi?
- how's the covid currently in Delhi?
- Tell me about covid currently in Maharashtra
- covid cases in Punjab currently

Query2

user can ask for total current confirmed cases of any two cities in India

Examples:

- Hey, what’s the total count of confirmed cases in Delhi, Maharashtra altogether?
- total confirmed cases in Delhi and Maharashtra together?
- total cases currently in Delhi and Maharashtra
- Get me the total current confirmed cases in Delhi and Maharashtra
- Tell me the total current confirmed cases in Delhi and Maharashtra

Query3

user can ask total cases between any dates(format: yyyy-mm-dd)

Examples:

- What’s the confirmed case count from 2020-10-01 to 2020-10-12?
- Hey, what's the current confirmed cases from 2020-10-01 to 2020-10-12?
- currently cases from 2020-10-01 to 2020-10-12?
- Hey, what’s the total count of confirmed cases from 2020-10-01 to 2020-10-12?
- total confirmed cases from 2020-10-01 to 2020-10-12 in India?
- total cases from from 2020-10-01 to 2020-10-12? in India
- Get me the total current confirmed cases from 2020-10-01 to 2020-10-12? in India
- Tell me the total current confirmed cases from 2020-10-01 to 2020-10-12? in India

Implementation

All components are defined to support the conversation flow . The end-user intents here are: who_are_you, covid_in_city, covid_in_two_city, covid_in_period, covid_without_city, greet, goodbye, affirm, deny, mood_great, mood_unhappy, bot_challenge, how_are_you, capabilities In Rasa, the slots can be used for passing information to and back between Rasa and external actions. Three slots are required: city,city2, init_date,final_date.

The responses where the personality is also largely created are: utter_greet, utter_goodbye, utter_ask city (triggers city_form), utter_iamabot, utter_capabilities, utter_im_well so on. This also includes the external action, action_covid, which fetches the COVID-19 data, parses it and generates the COVID-19 response sentence.

External actions are user defined functions written in python. Only one action, action_covid, is required. It is split in two separate functionalities here: actions.py which receives slots: city,city2,init_date and final_date from Rasa. It then queries the COVID-19 data for specific city from covid_api.py where a function covid_data(city,city2,init_data,final_data) is defined. The function returns the COVID-19 data(totalcases) after getting filtered out from (https://api.rootnet.in/covid19-in/stats/history) onecall json format to action_covid, which then forms a response sentense to be passed back to Rasa.

The user intents, stories and rules are used for training the NLP model. These intent examples cover tens of different ways of asking questions, and explaining to the model how to find the values for the three slots and what is the intent the user has. The stories contain the conversation flows and rules that will stop any conversation and force a different path.

Installation

Installation assumes existing installation of miniconda or anaconda. https://www.anaconda.com/

pip3 & Rasa

Below are the simple steps for creating a virtual environment, install pip3 and Rasa Open Source 2.0.

conda create -n RasaEnv python=3.7.6 
conda activate RasaEnv
conda install -c anaconda pip3
pip3 install rasa==2.8.11  

In case of issue, please refer to Rasa Open Source installation pages: https://rasa.com/docs/rasa/installation/

Creating and initialising a new project:

mkdir rasa
cd rasa
rasa init --no-prompt

This will create a new directlry, under which rasa creates all necessary directories and files.

Replace all files in the rasa directory with the files in the project.

Train the model and run the bot

Train the model with command

rasa train

There are additional actions that need to be started before starting the bot evaluation. These are in actions.py and covid_api.py files. To do so, run below commands on two different terminals:

rasa run actions

Start the discussion with rasabot:

rasa shell

References

- Rasa. (n.d.). Rasa: Open source conversational AI. URL: https://rasa.com

Owner
Aazim Parwaz
I am a 3rd year computer science undergraduate at NIT Srinagar
Aazim Parwaz
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022