Elevation Mapping on GPU.

Overview

Elevation Mapping cupy

Overview

This is a ros package of elevation mapping on GPU.
Code are written in python and uses cupy for GPU calculation.
screenshot

* plane segmentation is coming soon.

Citing

Takahiro Miki, Lorenz Wellhausen, Ruben Grandia, Fabian Jenelten, Timon Homberger, Marco Hutter
Elevation Mapping for Locomotion and Navigation using GPU arXiv

@misc{https://doi.org/10.48550/arxiv.2204.12876,
  doi = {10.48550/ARXIV.2204.12876},
  
  url = {https://arxiv.org/abs/2204.12876},
  
  author = {Miki, Takahiro and Wellhausen, Lorenz and Grandia, Ruben and Jenelten, Fabian and Homberger, Timon and Hutter, Marco},
  
  keywords = {Robotics (cs.RO), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Elevation Mapping for Locomotion and Navigation using GPU},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

Installation

CUDA & cuDNN

The tested versions are CUDA10.2, 11.6

CUDA
cuDNN.

Check how to install here.

Python dependencies

You will need

For traversability filter, either of

Optinally, opencv for inpainting filter.

Install numpy, scipy, shapely, opencv-python with the following command.

pip3 install -r requirements.txt

Cupy

cupy can be installed with specific CUDA versions. (On jetson, only "from source" i.e. pip install cupy could work)

For CUDA 10.2 pip install cupy-cuda102

For CUDA 11.0 pip install cupy-cuda110

For CUDA 11.1 pip install cupy-cuda111

For CUDA 11.2 pip install cupy-cuda112

For CUDA 11.3 pip install cupy-cuda113

For CUDA 11.4 pip install cupy-cuda114

For CUDA 11.5 pip install cupy-cuda115

For CUDA 11.6 pip install cupy-cuda116

(Install CuPy from source) % pip install cupy

Traversability filter

You can choose either pytorch, or chainer to run the CNN based traversability filter.
Install by following the official documents.

Pytorch uses ~2GB more GPU memory than Chainer, but runs a bit faster.
Use parameter use_chainer to select which backend to use.

ROS package dependencies

sudo apt install ros-noetic-pybind11-catkin
sudo apt install ros-noetic-grid-map-core ros-noetic-grid-map-msgs

On Jetson

CUDA CuDNN

CUDA and cuDNN can be installed via apt. It comes with nvidia-jetpack. The tested version is jetpack 4.5 with L4T 32.5.0.

python dependencies

On jetson, you need the version for its CPU arch:

wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whl
pip3 install Cython
pip3 install numpy==1.19.5 torch-1.8.0-cp36-cp36m-linux_aarch64.whl

Also, you need to install cupy with

pip3 install cupy

This builds the packages from source so it would take time.

ROS dependencies

sudo apt install ros-melodic-pybind11-catkin
sudo apt install ros-melodic-grid-map-core ros-melodic-grid-map-msgs

Also, on jetson you need fortran (should already be installed).

sudo apt install gfortran

If the Jetson is set up with Jetpack 4.5 with ROS Melodic the following package is additionally required:

git clone [email protected]:ros/filters.git -b noetic-devel

Usage

Build

catkin build elevation_mapping_cupy

Errors

If you get error such as

Make Error at /usr/share/cmake-3.16/Modules/FindPackageHandleStandardArgs.cmake:146 (message):
  Could NOT find PythonInterp: Found unsuitable version "2.7.18", but
  required is at least "3" (found /usr/bin/python)

Build with option.

catkin build elevation_mapping_cupy -DPYTHON_EXECUTABLE=$(which python3)

Run

Basic usage.

roslaunch elevation_mapping_cupy elevation_mapping_cupy.launch

Run TurtleBot example

First, install turtlebot simulation.

sudo apt install ros-noetic-turtlebot3*

Then, you can run the example.

export TURTLEBOT3_MODEL=waffle
roslaunch elevation_mapping_cupy turtlesim_example.launch

To control the robot with a keyboard, a new terminal window needs to be opened.
Then run

export TURTLEBOT3_MODEL=waffle
roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Velocity inputs can be sent to the robot by pressing the keys a, w, d, x. To stop the robot completely, press s.

Subscribed Topics

  • topics specified in pointcloud_topics in parameters.yaml ([sensor_msgs/PointCloud2])

    The distance measurements.

  • /tf ([tf/tfMessage])

    The transformation tree.

Published Topics

The topics are published as set in the rosparam.
You can specify which layers to publish in which fps.

Under publishers, you can specify the topic_name, layers basic_layers and fps.

publishers:
  your_topic_name:
    layers: ['list_of_layer_names', 'layer1', 'layer2']             # Choose from 'elevation', 'variance', 'traversability', 'time' + plugin layers
    basic_layers: ['list of basic layers', 'layer1']                # basic_layers for valid cell computation (e.g. Rviz): Choose a subset of `layers`.
    fps: 5.0                                                        # Publish rate. Use smaller value than `map_acquire_fps`.

Example setting in config/parameters.yaml.

  • elevation_map_raw ([grid_map_msg/GridMap])

    The entire elevation map.

  • elevation_map_recordable ([grid_map_msg/GridMap])

    The entire elevation map with slower update rate for visualization and logging.

  • elevation_map_filter ([grid_map_msg/GridMap])

    The filtered maps using plugins.

Plugins

You can create your own plugin to process the elevation map and publish as a layer in GridMap message.

Let's look at the example.

First, create your plugin file in elevation_mapping_cupy/script/plugins/ and save as example.py.

import cupy as cp
from typing import List
from .plugin_manager import PluginBase


class NameOfYourPlugin(PluginBase):
    def __init__(self, add_value:float=1.0, **kwargs):
        super().__init__()
        self.add_value = float(add_value)

    def __call__(self, elevation_map: cp.ndarray, layer_names: List[str],
            plugin_layers: cp.ndarray, plugin_layer_names: List[str])->cp.ndarray:
        # Process maps here
        # You can also use the other plugin's data through plugin_layers.
        new_elevation = elevation_map[0] + self.add_value
        return new_elevation

Then, add your plugin setting to config/plugin_config.yaml

example:                                      # Use the same name as your file name.
  enable: True                                # weather to laod this plugin
  fill_nan: True                              # Fill nans to invalid cells of elevation layer.
  is_height_layer: True                       # If this is a height layer (such as elevation) or not (such as traversability)
  layer_name: "example_layer"                 # The layer name.
  extra_params:                               # This params are passed to the plugin class on initialization.
    add_value: 2.0                            # Example param

Finally, add your layer name to publishers in config/parameters.yaml. You can create a new topic or add to existing topics.

  plugin_example:   # Topic name
    layers: ['elevation', 'example_layer']
    basic_layers: ['example_layer']
    fps: 1.0        # The plugin is called with this fps.
Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022