Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

Overview

CRAFT: Character-Region Awareness For Text detection

Downloads PyPI version Conda version CI

Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

Overview

PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.

teaser

Getting started

Installation

  • Install using conda for Linux, Mac and Windows (preferred):
conda install -c fcakyon craft-text-detector
  • Install using pip for Linux and Mac:
pip install craft-text-detector

Basic Usage

# import Craft class
from craft_text_detector import Craft

# set image path and export folder directory
image_path = 'figures/idcard.png'
output_dir = 'outputs/'

# create a craft instance
craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)

# apply craft text detection and export detected regions to output directory
prediction_result = craft.detect_text(image_path)

# unload models from ram/gpu
craft.unload_craftnet_model()
craft.unload_refinenet_model()

Advanced Usage

# import craft functions
from craft_text_detector import (
    read_image,
    load_craftnet_model,
    load_refinenet_model,
    get_prediction,
    export_detected_regions,
    export_extra_results,
    empty_cuda_cache
)

# set image path and export folder directory
image_path = 'figures/idcard.png'
output_dir = 'outputs/'

# read image
image = read_image(image_path)

# load models
refine_net = load_refinenet_model(cuda=True)
craft_net = load_craftnet_model(cuda=True)

# perform prediction
prediction_result = get_prediction(
    image=image,
    craft_net=craft_net,
    refine_net=refine_net,
    text_threshold=0.7,
    link_threshold=0.4,
    low_text=0.4,
    cuda=True,
    long_size=1280
)

# export detected text regions
exported_file_paths = export_detected_regions(
    image_path=image_path,
    image=image,
    regions=prediction_result["boxes"],
    output_dir=output_dir,
    rectify=True
)

# export heatmap, detection points, box visualization
export_extra_results(
    image_path=image_path,
    image=image,
    regions=prediction_result["boxes"],
    heatmaps=prediction_result["heatmaps"],
    output_dir=output_dir
)

# unload models from gpu
empty_cuda_cache()
You might also like...
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Augmenting Anchors by the Detector Itself
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream video.

Comments
  • Add more options for detect_text method

    Add more options for detect_text method

    Hi, sometime I don't want detect_text from file, I want detect_text directly from image in ndarray format, that will save more cost of I/O time. So I contribute this. Thanks for your work

    opened by ducviet00 2
  • Enable package to load model from local path

    Enable package to load model from local path

    When using the pypi package it should be allowed to use a model from a local path, because loading it from a remote location removes the control over what model is currently used. And might also result in pull limits being reached.

    enhancement 
    opened by TanjaBayer 1
  • Fix #8 - Fixing cuda issues in basic usage text detection

    Fix #8 - Fixing cuda issues in basic usage text detection

    Fixing issue #8

    In this quick-fix I referenced craft_net as a global variable. If this is not an acceptable workaround, then consider reorganizing the structure of the code.

    Have a nice day :)

    opened by gaborpelesz 1
  • accept customized weights path when loading models

    accept customized weights path when loading models

    path for the weight file can be specified by:

    load_craftnet_model(weight_path="path/to/weight")
    
    load_refinenet_model(weight_path="path/to/weight")
    
    opened by fcakyon 0
Releases(0.4.3)
  • 0.4.3(May 9, 2022)

    What's Changed

    • Enable package to load model from local path by @TanjaBayer in https://github.com/fcakyon/craft-text-detector/pull/53

    New Contributors

    • @TanjaBayer made their first contribution in https://github.com/fcakyon/craft-text-detector/pull/53

    Full Changelog: https://github.com/fcakyon/craft-text-detector/compare/0.4.2...0.4.3

    Source code(tar.gz)
    Source code(zip)
  • 0.4.2(Jan 6, 2022)

    What's Changed

    • fix opencv version by @fcakyon in https://github.com/fcakyon/craft-text-detector/pull/48

    Full Changelog: https://github.com/fcakyon/craft-text-detector/compare/0.4.1...0.4.2

    Source code(tar.gz)
    Source code(zip)
  • 0.4.1(Dec 20, 2021)

    What's Changed

    • fix crop export by @fcakyon in https://github.com/fcakyon/craft-text-detector/pull/45

    Full Changelog: https://github.com/fcakyon/craft-text-detector/compare/0.4.0...0.4.1

    Source code(tar.gz)
    Source code(zip)
  • 0.4.0(Jul 30, 2021)

  • 0.3.5(May 12, 2021)

  • 0.3.4(Apr 7, 2021)

    • add support for PIL and numpy images in addition to filepath. https://github.com/fcakyon/craft-text-detector/pull/28
    from PIL import Image
    import numpy
    
    # can be filepath, PIL image or numpy array
    image = 'figures/idcard.png' 
    image = Image.open("figures/idcard.png")
    image = numpy.array(Image.open("figures/idcard.png"))
    
    # apply craft text detection
    prediction_result = craft.detect_text(image)
    Source code(tar.gz)
    Source code(zip)
  • 0.3.3(Mar 2, 2021)

  • 0.3.2(Mar 2, 2021)

    path for the weight file can be specified by:

    load_craftnet_model(weight_path="path/to/weight")
    
    load_refinenet_model(weight_path="path/to/weight")
    
    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(May 14, 2020)

    • updated basic usage for better device handling, now Craft instance should be created before calling detect_text:
    # import Craft class
    from craft_text_detector import Craft
    
    # set image path and export folder directory
    image_path = 'figures/idcard.png'
    output_dir = 'outputs/'
    
    # create a craft instance
    craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)
    
    # apply craft text detection and export detected regions to output directory
    prediction_result = craft.detect_text(image_path)
    
    # unload models from ram/gpu
    craft.unload_craftnet_model()
    craft.unload_refinenet_model()
    
    • some internal naming and styling changes
    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(May 10, 2020)

  • v0.2.0a(Apr 22, 2020)

  • v0.2.0(Apr 22, 2020)

Owner
Senior Machine Learning Engineer, METU & Bilkent alum.
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
Usando o Amazon Textract como OCR para Extração de Dados no DynamoDB

dio-live-textract2 Repositório de código para o live coding do dia 05/10/2021 sobre extração de dados estruturados e gravação em banco de dados a part

hugoportela 0 Jan 19, 2022
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
Computer vision applications project (Flask and OpenCV)

Computer Vision Applications Project This project is at it's initial phase. This is all about the implementation of different computer vision techniqu

Suryam Thapa 1 Jan 26, 2022
Maze generator and solver with python

Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P

Joseph 19 Dec 07, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.

NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa

61 Dec 22, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
Automatically remove the mosaics in images and videos, or add mosaics to them.

Automatically remove the mosaics in images and videos, or add mosaics to them.

Hypo 1.4k Dec 30, 2022
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022