Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

Overview

DataTuner

You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task.

Installation

Environment Creation

Assuming you have an existing conda setup, you can setup the environment with the following script. In order to activate the conda environment within the bash script, you need the location of the conda.sh file:

bash setup.sh  ~/miniconda3/etc/profile.d/conda.sh

You can update your existing environment:

conda env update -f=environment.yml

To start development, activate your environment:

conda activate finetune

Alternatively, you can always use the python binary with the absolute path, e.g.: ~/miniconda3/envs/finetune/bin/python.

Data

For any task you want to fine-tune on, you need the data to be a json file containing a list of json objects, one per data point. For example:

[
  {
    "question": "question text 1",
    "query": "query 1"
  },
  {
    "question": "question text 2",
    "query": "query 2 with [SpecialToken example]"
  }
]

The library assumes that you have placed your data in a single directory with three files: train.json, validation.json, and test.json.

Configuration

Now that we have the data in shape, we need to create a new task configuration file that specifies how we want the data to be formatted and what fields should be considered. You can create new config files in the folder src/datatuner/lm/task_configs.

A typical config file would look as follows:

{
"name": "dataset_name",
"data_shape": [
        {
            "id": "<question>",
            "type": "special",
            "learn": false
        },
        {
            "id": "question",
            "type": "text",
            "learn": false
        },
        {
            "id": "<query>",
            "type": "special",
            "learn": false
        },
        {
            "id": "query",
            "type": "text",
            "learn": true,
            "metrics": [
                "match"
            ]
        }
    ],
"extra_special_tokens": ["[SpecialToken"],
"extra_fields": []
}

For each item in the data shape:

  • type (required): special if special token, text if normal text.
  • id (required): the special token ID if type is special; the key for the text in the json data if type is text
  • learn (required): whether to allow the model to learn this part of the text. If false, the model masks that part during fine-tuning.
  • metrics (optional): the list of metrics that the model should compute upon evaluation. Each metric should have a corresponding function with the same name in metrics.py.
  • converter (optional): the name of the converter function in converters.py to apply on that text field after reading the text from the file.

The value of extra_special_tokens is a list of special tokens to be added to the vocabulary. Alternatively (especially if the list is too long or is generated automatically), you can create a text file with one special token per line and pass that as an argument during training via the --special_tokens_file argument.

The value of extra_fields is a list of additional fields to include from the input json files to output during evaluation, aside from the main fields used as inputs/outputs.

Training

The training script train.py can be used in single GPU or multi GPU settings.

cd src/datatuner/lm

# single gpu
python train.py --model_checkpoint ~/data/openai-gpt/  --dataset_path ../../../data/my_dataset/  --task_config ./task_configs/my_task_config.json --n_epoch 3 --lr 1e-5

# multi gpu
python -m torch.distributed.launch --nproc_per_node=4 train.py --model_checkpoint ~/data/openai-gpt/  --dataset_path ../../../data/my_dataset/  --task_config ./task_configs/my_task_config.json --n_epoch 3 --lr 1e-5

Evaluating the Model

You can run the following to evaluate the model on any test set. The data format is the same as the training data. Notice that you have to currently specify the model_type parameter matching the model you're loading:

cd src/datatuner/lm

python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/2020-01-01_01-01-01  --filename ../../../data/my_dataset/test.json --max_length 200 --model_type gpt --top_k 1

# or if you just want to evaluate the latest model you trained 
RUN=$(ls -t ./runs | head -1) && python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/$RUN  --filename ../../../data/my_dataset/test.json --max_length 200 --model_type gpt  --top_k 1

# or if you want to use the latest intermediate checkpoint while the model is training:
RUN=$(ls -t ./runs | head -1) && CHECKPOINT=$(ls -t ./runs/$RUN/checkpoint* | head -1) && cp $CHECKPOINT runs/$RUN/pytorch_model.bin

During evaluation, the outputs that do not exactly match the expected outputs will be printed. Also, the metrics will be printed (a dictionary with keys <metric_name>_<field_name>). At the end of evaluation, you will find the file with all the generated ouputs in the file eval_results/<run_folder_name>/<task_name>_<test_file_name>_<model_type>_generated.json.

Interacting with the model

You can also interact with the models. The client will ask you to input the fields required, and it will generate the fields it learnt.

cd src/datatuner/lm

python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/2020-01-01_01-01-01  --max_length 200 --model_type gpt  --top_k 1 --input

# or if you just want to evaluate the latest model you trained 
RUN=$(ls -t ./runs | head -1) && python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/$RUN  --max_length 200 --model_type gpt  --top_k 1 --input
Shape Detection - It's a shape detection project with OpenCV and Python.

Shape Detection It's a shape detection project with OpenCV and Python. Setup pip install opencv-python for doing AI things. pip install simpleaudio fo

1 Nov 26, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
Morphological edge detection or object's boundary detection using erosion and dialation in OpenCV python

Morphologycal-edge-detection-using-erosion-and-dialation the task is to detect object boundary using erosion or dialation . Here, use the kernel or st

Tamzid hasan 3 Nov 25, 2022
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
A machine learning software for extracting information from scholarly documents

GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means

Patrice Lopez 1.9k Jan 08, 2023
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
一款基于Qt与OpenCV的仿真数字示波器

一款基于Qt与OpenCV的仿真数字示波器

郭赟 4 Nov 02, 2022
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022