MODNet: Trimap-Free Portrait Matting in Real Time

Overview

MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.
MODNet是一个仅需RGB图片输入实时人像抠图模型。

Online Solution (在线方案) | Research Demo | Arxiv Preprint | Supplementary Video

Community | Code | PPM Benchmark | License | Acknowledgement | Citation | Contact

News: We create a repository for our new model MODNet-V that focuses on faster and better portrait video matting.
News: The PPM-100 benchmark is released in this repository.


Online Solution (在线方案)

The online solution for portrait matting is coming!
人像抠图在线方案发布了!

Portrait Image Matting Solution (图片抠像方案)

A Single Model! Only 7M! Process 2K resolution image with a Fast speed on common PCs or Mobiles!
单个模型!大小仅为7M!可以在普通PC或移动设备上快速处理具有2K分辨率的图像!

Now you can try our portrait image matting online via this website.
现在,您可以通过此网站在线使用我们的图片抠像功能。

Research Demo

All the models behind the following demos are trained on the datasets mentioned in our paper.

Portrait Image Matting

We provide an online Colab demo for portrait image matting.
It allows you to upload portrait images and predict/visualize/download the alpha mattes.

Portrait Video Matting

We provide two real-time portrait video matting demos based on WebCam. When using the demo, you can move the WebCam around at will. If you have an Ubuntu system, we recommend you to try the offline demo to get a higher fps. Otherwise, you can access the online Colab demo.
We also provide an offline demo that allows you to process custom videos.

Community

We share some cool applications/extentions of MODNet built by the community.

  • WebGUI for Portrait Image Matting
    You can try this WebGUI (hosted on Gradio) for portrait image matting from your browser without code!

  • Colab Demo of Bokeh (Blur Background)
    You can try this Colab demo (built by @eyaler) to blur the backgroud based on MODNet!

  • ONNX Version of MODNet
    You can convert the pre-trained MODNet to an ONNX model by using this code (provided by @manthan3C273). You can also try this Colab demo for MODNet image matting (ONNX version).

  • TorchScript Version of MODNet
    You can convert the pre-trained MODNet to an TorchScript model by using this code (provided by @yarkable).

  • TensorRT Version of MODNet
    You can access this Github repository to try the TensorRT version of MODNet (provided by @jkjung-avt).

There are some resources about MODNet from the community.

Code

We provide the code of MODNet training iteration, including:

  • Supervised Training: Train MODNet on a labeled matting dataset
  • SOC Adaptation: Adapt a trained MODNet to an unlabeled dataset

In the code comments, we provide examples for using the functions.

PPM Benchmark

The PPM benchmark is released in a separate repository PPM.

License

All resources in this repository (code, models, demos, etc.) are released under the Creative Commons Attribution NonCommercial ShareAlike 4.0 license.
The license will be changed to allow commercial use after our paper is accepted.

Acknowledgement

Citation

If this work helps your research, please consider to cite:

@article{MODNet,
  author = {Zhanghan Ke and Kaican Li and Yurou Zhou and Qiuhua Wu and Xiangyu Mao and Qiong Yan and Rynson W.H. Lau},
  title = {Is a Green Screen Really Necessary for Real-Time Portrait Matting?},
  journal={ArXiv},
  volume={abs/2011.11961},
  year = {2020},
}

Contact

This repository is currently maintained by Zhanghan Ke (@ZHKKKe).
For questions, please contact [email protected].

Owner
Zhanghan Ke
PhD Candidate @ CityU
Zhanghan Ke
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022