Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Related tags

Deep Learningrobopose
Overview

Single-view robot pose and joint angle estimation via render & compare

Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic

CVPR: Conference on Computer Vision and Pattern Recognition, 2021 (Oral)

[Paper] [Project page] [Supplementary Video]

overview RoboPose. (a) Given a single RGB image of a known articulated robot in an unknown configuration (left), RoboPose estimates the joint angles and the 6D camera-to-robot pose (rigid translation and rotation) providing the complete state of the robot within the 3D scene, here illustrated by overlaying the articulated CAD model of the robot over the input image (right). (b) When the joint angles are known at test-time (e.g. from internal measurements of the robot), RoboPose can use them as an additional input to estimate the 6D camera-to-robot pose to enable, for example, visually guided manipulation without fiducial markers.

Citation

If you use this code in your research, please cite the paper:

@inproceedings{labbe2021robopose,
title= {Single-view robot pose and joint angle estimation via render & compare}
author={Y. {Labb\'e} and J. {Carpentier} and M. {Aubry} and J. {Sivic}},
booktitle={Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021}}

Table of content

Overview

This repository contains the code for the full RoboPose approach and for reproducing all the results from the paper (training, inference and evaluation).

overview

Installation

git clone --recurse-submodules https://github.com/ylabbe/robopose.git
cd robopose
conda env create -n robopose --file environment.yaml
conda activate robopose
python setup.py install
mkdir local_data

The installation may take some time as several packages must be downloaded and installed/compiled. If you plan to change the code, run python setup.py develop.

Downloading and preparing data

All data used (datasets, models, results, ...) are stored in a directory local_data at the root of the repository. Create it with mkdir local_data or use a symlink if you want the data to be stored at a different place. We provide the utility robopose/scripts/download.py for downloading required data and models. All of the files can also be downloaded manually.

Robot URDF & CAD models

python -m robopose.scripts.download --robot=owi
python -m robopose.scripts.download --robot=kuka
python -m robopose.scripts.download --robot=panda
python -m robopose.scripts.download --robot=baxter

DREAM & CRAVES Datasets

python -m robopose.scripts.download --datasets=craves.test
python -m robopose.scripts.download --datasets=dream.test

# Only for re-training the models
python -m robopose.scripts.download --datasets=craves.train
python -m robopose.scripts.download --datasets=dream.train

Pre-trained models

python -m robopose.scripts.download --model=panda-known_angles
python -m robopose.scripts.download --model=panda-predict_angles
python -m robopose.scripts.download --model=kuka-known_angles
python -m robopose.scripts.download --model=kuka-predict_angles
python -m robopose.scripts.download --model=baxter-known_angles
python -m robopose.scripts.download --model=baxter-predict_angles
python -m robopose.scripts.download --model=owi-predict_angles

DREAM & CRAVES original results

python -m robopose.scripts.download --dream_paper_results
python -m robopose.scripts.download --craves_paper_results

Notes:

  • Dream results were extracted using the official code from https://github.com/NVlabs/DREAM.
  • CRAVES results were extracted using the code provided with the paper. We slightly modified this code to compute the errors on the whole LAB dataset, the code used can be found on our fork.

Note on GPU parallelization

Training and evaluation code can be parallelized across multiple gpus and multiple machines using vanilla torch.distributed. This is done by simply starting multiple processes with the same arguments and assigning each process to a specific GPU via CUDA_VISIBLE_DEVICES. To run the processes on a local machine or on a SLUMR cluster, we use our own utility job-runner but other similar tools such as dask-jobqueue or submitit could be used. We provide instructions for single-node multi-gpu training, and for multi-gpu multi-node training on a SLURM cluster.

Single gpu on a single node

# CUDA ID of GPU you want to use
export CUDA_VISIBLE_DEVICES=0
python -m robopose.scripts.example_multigpu

where scripts.example_multigpu can be replaced by scripts.run_pose_training or scripts.run_robopose_eval (see below for usage of training/evaluation scripts).

Configuration of job-runner for multi-gpu usage

Change the path to the code directory, anaconda location and specify a temporary directory for storing job logs by modifying `job-runner-config.yaml'. If you have access to a SLURM cluster, specify the name of the queue, it's specifications (number of GPUs/CPUs per node) and the flags you typically use in a slurm script. Once you are done, run:

runjob-config job-runner-config.yaml

Multi-gpu on a single node

# CUDA IDS of GPUs you want to use
export CUDA_VISIBLE_DEVICES=0,1
runjob --ngpus=2 --queue=local python -m robopose.scripts.example_multigpu

The logs of the first process will be printed. You can check the logs of the other processes in the job directory.

On a SLURM cluster

runjob --ngpus=8 --queue=gpu_p1  python -m robopose.scripts.example_multigpu

Reproducing results using pre-trained models

We provide the inference results on all datasets to reproduce the results from the paper. You can download these results, generate the tables and qualitative visualization of our predictions on the test datasets. The results will be downloaded to local_data/results.

Downloading inference results

# Table 1, DREAM paper results (converted from the original format)
python -m robopose.scripts.download --results=dream-paper-all-models

# Table 1, DREAM Known joint angles
python -m robopose.scripts.download --results=dream-known-angles

# Table 1, DREAM Unknown joint angles
python -m robopose.scripts.download --results=dream-unknown-angles

# Table 2, Iterative results
python -m robopose.scripts.download --results=panda-orb-known-angles-iterative

# Table 3, Craves-Lab
python -m robopose.scripts.download --results=craves-lab

# Table 4, Craves Youtube
python -m robopose.scripts.download --results=craves-youtube

# Table 5, Analysis of the choice of reference point
python -m robopose.scripts.download --results=panda-reference-point-ablation

# Table 6, Analysis of the choice of the anchor part
python -m robopose.scripts.download --results=panda-anchor-ablation

# Sup. Mat analysis of the number of iterations
python -m robopose.scripts.download --results=panda-train_iterations-ablation

You can generate the numbers from the tables from these inference/evaluation results using the notebook notebooks/generate_results.ipynb.

You can generate visualization of the results using the notebook notebooks/visualize_predictions.ipynb. overview

Running inference

We provide the code for running inference and re-generate all results. This is done using the run_robot_eval script. The results were obtained using the following commands:

## Main results and comparisons
# DREAM datasets,  DREAM models
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda  --model=dream-all-models --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-baxter --model=dream-all-models --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-kuka  --model=dream-all-models --id 1804

# DREAM datasets, ours (known joints)
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda  --model=knownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-baxter --model=knownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-kuka   --model=knownq --id 1804

# DREAM datasets, ours (unknown joints)
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda  --model=unknownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-baxter --model=unknownq --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-kuka   --model=unknownq --id 1804

# CRAVES LAB dataset
runjob --ngpus=8 python scripts/run_robot_eval.py --datasets=craves-lab --model=unknownq --id 1804

# CRAVES Youtube dataset
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=500 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=750 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1000 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1250 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1500 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=1750 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=2000 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=craves-youtube --model=unknownq-focal=5000 --id 1804


## Ablations
# Online evaluation, Table 2
runjob --ngpus=8 python scripts/run_robot_eval.py --datasets=dream-panda-orb --model=knownq --id 1804 --eval_all_iter
runjob --ngpus=1 python scripts/run_robot_eval.py --datasets=dream-panda-orb --model=knownq-online --id 1804

# Analysis of reference point, Table 5
python -m robopose.scripts.download --models=ablation_reference_point
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link0 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link1 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link5 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link2 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link4 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=knownq-link9 --id 1804

# Analysis of anchor part, Table 6
python -m robopose.scripts.download --models=ablation_anchor
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link1 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link2 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link5 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link0 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link4 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-link9 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-random_all --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-random_top5 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=unknownq-random_top3 --id 1804

# Analysis of number of iterations, Supplementary Material.
python -m robopose.scripts.download --models=ablation_train_iterations
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=1 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=2 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=3 --id 1804
runjob --ngpus=8  python scripts/run_robot_eval.py --datasets=dream-panda-orb  --model=train_K=5 --id 1804

Re-training the models

We provide all the training code.

Background images for data augmentation

We apply data augmentation to the training images. Data augmentation includes pasting random images of the pascal VOC dataset on the background of the scenes. You can download Pascal VOC using the following commands:

cd local_data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_11-May-2012.tar

(If the website is down, which happens periodically, you can alternatively download these files from a mirror at https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar)

Reproducing models from the paper

runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-panda-gt_joints
runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-panda-predict_joints

runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-baxter-gt_joints
runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-baxter-predict_joints

runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-kuka-gt_joints
runjob --ngpus=44  python scripts/run_articulated_training.py --config=dream-kuka-predict_joints

runjob --ngpus=44  python scripts/run_articulated_training.py --config=craves-owi535-predict_joints
Owner
Yann Labbé
PhD Student at INRIA Willow in computer vision and robotics.
Yann Labbé
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022