GAN-based Matrix Factorization for Recommender Systems

Overview

GAN-based Matrix Factorization for Recommender Systems

GANMF architecture

This repository contains the datasets' splits, the source code of the experiments and their results for the paper "GAN-based Matrix Factorization for Recommender Systems" (arXiv: https://arxiv.org/abs/2201.08042) accepted at the 37th ACM/SIGAPP Symposium on Applied Computing (SAC '22).

How to use this repo

This repo is based on a version of Recsys_Course_AT_PoliMi. In order to run the code and experiments you need first to setup a Python environment. Any environment manager will work, but we suggest conda since it is easier to recreate our environment if using a GPU. conda can help with the installation of CUDA and CUDA toolkit necessary to utilize available GPU(s). We highly recommend running this repo with a GPU since GAN-based recommenders require long training times.

Conda

Run the following command to create a new environment with Python 3.6.8 and install all requirements in file conda_requirements.txt:

conda create -n <name-env> python==3.6.8 --file conda_requirements.txt

The file conda_requirements.txt also contains the packages cudatoolkit==9.0 and cudnn==7.1.2 which are installed completely separate from other versions you might already have installed and are managed by conda.

Install the following packages using pip inside the newly created environment since they are not found in the main channel of conda and conda-forge channel holds old versions of them:

pip install scikit-optimize==0.7.2 telegram-send==0.25

Activate the newly created environment:

conda activate <name-env>

Virtualenv & Pip

First download and install Python 3.6.8 from python.org. Then install virtualenv:

python -m pip install --user virtualenv

Now create a new environment with virtualenv (by default it will use the Python version it was installed with):

virtualenv <name-env> <path-to-new-env>

Activate the new environment with:

source <path-to-new-env>/bin/activate

Install the required packages through the file pip_requirements.txt:

pip install -r pip_requirements.txt

Note that if you intend to use a GPU and install required packages using virtualenv and pip then you need to install separately cudatoolkit==9.0 and cudnn==7.1.2 following instructions for your GPU on nvidia.com.

Before running any experiment or algorithm you need to compile the Cython code part of some of the recommenders. You can compile them all with the following command:

python run_compile_all_cython.py

N.B You need to have the following packages installed before compiling: gcc and python3-dev.

N.B Since the experiments can take a long time, the code notifies you on your Telegram account when the experiments start/end. Either configure telegram-send as indicated on https://pypi.org/project/telegram-send/#installation or delete the lines containing telegram-send inside RecSysExp.py.


Running experiments

All results presented in the paper are already provided in this repository. In case you want to re-run the experiments, below you can find the steps for each one of them.

Comparison with baselines1

In order to run all the comparisons with the baselines use the file RecSysExp.py. First compute for each dataset the 5 mutually exclusive sets:

  • Training set: once best hyperparameters of the recommender are found, it will be finally trained with this set.

    • Training set small: the recommender is first trained on this small training set with the aim of finding the best hyperparameters.
    • Early stopping set: validation set used to incorporate early stopping in the hyperparameters tuning.
    • Validation set: the recommender with the current hyperparameter values is tested against this set.
  • Test set: once the best hyperparameters are found, the recommender is finally tested with this set. The results presented are the ones on this set.

Compute the splits for each dataset with the following command:

python RecSysExp.py --build-dataset <dataset-name>

To run the tuning of a recommender use the following command:

python RecSysExp.py <dataset-name> <recommender-name> [--user | --item] [<similarity-type>] 
  • dataset-name is a value among: 1M, hetrec2011, LastFM.
  • recommender-name is a value among: TopPop, PureSVD, ALS, SLIMBPR, ItemKNN, P3Alpha, CAAE, CFGAN, GANMF.
  • --user or --item is a flag used only for GAN-based recommenders. It denotes the user/item-based training procedure for the selected recommender.
  • similarity-type is a value among: cosine, jaccard, tversky, dice, euclidean, asymmetric. It is used only for ItemKNN recommender.

All results, best hyperparameters and dataset splits are saved in the experiments directory.


Testing on test set with best hyperparameters

In order to test each tuned recommender on the test set (which is created when tuning the hyperparameters) run the following command:

python RunBestParameters.py <dataset-name> <recommender-name> [--user | --item] [<similarity-type>] [--force] [--bp <best-params-dir>]
  • dataset-name is a value among: 1M, hetrec2011, LastFM.
  • recommender-name is a value among: TopPop, PureSVD, ALS, SLIMBPR, ItemKNN, P3Alpha, CAAE, CFGAN, GANMF.
  • --user or --item is a flag used only for GAN-based recommenders. It denotes the user/item based training procedure for the selected recommender.
  • similarity-type is a value among: cosine, jaccard, tversky, dice, euclidean, asymmetric. It is used only for ItemKNN recommender.
  • --force is a flag that forces the computation of the results on test set. By default, if the result for the tuple (dataset, recommender) exists in test_result directory, the computation is not performed.
  • --bp sets the directory where the best parameters (best_params.pkl) are located for this combination of (dataset, recommender), by default in experiments directory.

The results are saved in the test_results directory.


Ablation study

To run the ablation study, use the script AblationStudy.py as follows:

python AblationStudy.py <dataset-name> [binGANMF | feature-matching [--user | --item]]
  • dataset-name is a value among: 1M, hetrec2011, LastFM.
  • binGANMF runs the first ablation study, the GANMF model with binary classifier discrimnator. This tunes the recommender with RecSysExp.py and then evaluates it with RunBestParameters.py on the test set.
  • --user or --item is a flag that sets the training procedure for binGANMF recommender.
  • feature-matching runs the second ablation study, the effect of the feature matching loss and the user-user similarity heatmaps. The results are saved in the feature_matching directory.

MF model of GANMF

To run the qualitative study on the MF learned by GANMF, use the script MFLearned.py as follows:

python MFLearned.py

It executes both experiments and the results are saved in the latent_factors directory.

Footnotes

  1. For the baselines Top Popular, PureSVD, ALS, SLIMBPR, ItemKNN, P3Alpha and model evaluation we have used implementations from Recsys_Course_AT_PoliMi.

Owner
Ervin Dervishaj
Interested in Recommender Systems and Machine/Deep Learning research
Ervin Dervishaj
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
LBK 26 Dec 28, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021