Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Overview

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Cold-start problem is still a very challenging problem in recommender systems. Fortunately, the interactions of the cold-start users in the auxiliary source domain can help cold-start recommendations in the target domain. How to transfer user's preferences from the source domain to the target domain, is the key issue in Cross-domain Recommendation (CDR) which is a promising solution to deal with the cold-start problem. Most existing methods model a common preference bridge to transfer preferences for all users. Intuitively, since preferences vary from user to user, the preference bridges of different users should be different. Along this line, we propose a novel framework named Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR). Specifically, a meta network fed with users' characteristic embeddings is learned to generate personalized bridge functions to achieve personalized transfer of preferences for each user. To learn the meta network stably, we employ a task-oriented optimization procedure. With the meta-generated personalized bridge function, the user's preference embedding in the source domain can be transformed into the target domain, and the transformed user preference embedding can be utilized as the initial embedding for the cold-start user in the target domain. Using large real-world datasets, we conduct extensive experiments to evaluate the effectiveness of PTUPCDR on both cold-start and warm-start stages.

Requirements

  • Python 3.6
  • Pytorch > 1.0
  • tensorflow
  • Pandas
  • Numpy
  • Tqdm

File Structure

.
├── code
│   ├── config.json         # Configurations
│   ├── entry.py            # Entry function
│   ├── models.py           # Models based on MF, GMF or Youtube DNN
│   ├── preprocessing.py    # Parsing and Segmentation
│   ├── readme.md
│   └── run.py              # Training and Evaluating 
└── data
    ├── mid                 # Mid data
    │   ├── Books.csv
    │   ├── CDs_and_Vinyl.csv
    │   └── Movies_and_TV.csv
    ├── raw                 # Raw data
    │   ├── reviews_Books_5.json.gz
    │   ├── reviews_CDs_and_Vinyl_5.json.gz
    │   └── reviews_Movies_and_TV_5.json.gz
    └── ready               # Ready to use
        ├── _2_8
        ├── _5_5
        └── _8_2

Dataset

We utilized the Amazon Reviews 5-score dataset. To download the Amazon dataset, you can use the following link: Amazon Reviews or Google Drive. Download the three domains: Music, Movies, Books (5-scores), and then put the data in ./data/raw.

You can use the following command to preprocess the dataset. The two-phase data preprocessing includes parsing the raw data and segmenting the mid data. The final data will be under ./data/ready.

python entry.py --process_data_mid 1 --process_data_ready 1

Run

Parameter Configuration:

  • task: different tasks within 1, 2 or 3, default for 1
  • base_model: different base models within MF, GMF or DNN, default for MF
  • ratio: train/test ratio within [0.8, 0.2], [0.5, 0.5] or [0.2, 0.8], default for [0.8, 0.2]
  • epoch: pre-training and CDR mapping training epoches, default for 10
  • seed: random seed, default for 2020
  • gpu: the index of gpu you will use, default for 0
  • lr: learning_rate, default for 0.01
  • model_name: base model for embedding, default for MF

You can run this model through:

# Run directly with default parameters 
python entry.py

# Reset training epoch to `10`
python entry.py --epoch 20

# Reset several parameters
python entry.py --gpu 1 --lr 0.02

# Reset seed (we use seed in[900, 1000, 10, 2020, 500])
python entry.py --seed 900

If you wanna try different weight decay, meta net dimension, embedding dimmension or more tasks, you may change the settings in ./code/config.json. Note that this repository consists of our PTUPCDR and three baselines, TGTOnly, CMF, and EMCDR.

Reference

Zhu Y, Tang Z, Liu Y, et al. Personalized Transfer of User Preferences for Cross-domain Recommendation[C]. The 15th ACM International Conference on Web Search and Data Mining, 2022.

or in bibtex style:

@inproceedings{zhu2022ptupcdr,
  title={Personalized Transfer of User Preferences for Cross-domain Recommendation},
  author={Zhu, Yongchun and Tang, Zhenwei and Liu, Yudan and Zhuang, Fuzhen, and Xie, Ruobing and Zhang, Xu and Lin, Leyu and He, Qing},
  inproceedings={The 15th ACM International Conference on Web Search and Data Mining},
  year={2022}
}
Owner
Yongchun Zhu
ICT Yongchun Zhu
Yongchun Zhu
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022