This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Overview

S22-W4111-HW-1-0:
W4111 - Intro to Databases HW0 and HW1

Introduction

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks.

HW 0 - All Students

You have completed the first step, which is cloning the project template.

Note: You are Columbia students. You should be able to install SW and follow instructions.

MySQL:

  • Download the installation files for MySQL Community Server..

    • Make sure you download for the correct operating system.
    • If you are on Mac make sure you choose the correct architecture. ARM is for Apple silicon. x86 is for other Apple systems.
    • On Windows, you can download and use the MSI.
  • Follow the installation instructions for MySQL. There are official instructions and many online tutorials.

  • Remember your root user ID and password, that you set during installation. Also, choose "Legacy Authentication" when prompted.

    • If you forget your root user or password, you are on your own. The TAs and I will not fix any problems due to forgetting the information.
    • Also, if you say something like, "It did not prompt me for a user ID and password when I instaled ... ..," we will laugh. We will say something like, ""Sure. 20 million MySQL installations asked for the information, but it decide to not to ask you."
    • If you tell us that you are sure that you are entering the correct user ID and password we will laugh. We will say something like, "Which is more likely. That a DATABASE forgot something or" you did?"
  • You only need to install the server. All other SW packages are optional.

Anaconda:

  • I strongly recommend uninstalling any existing version of Anaconda. If you choose not to uninstall previous versions, you may hit issues. You are on your own if you hit issues due to conflicting versions of Anaconda during the semester.

  • Download the most recent version of Ananconda..

  • Follow the installation instructions. Choose "Install for me" when prompted. If you hit a problem and I find your Anaconda installation in the wrong directory, you are on your own. If you say something like, "But, it did not give me that option," you can guess what will happen.

DataGrip:

  • Download DataGrip. Make sure you choose the correct OS and silicon.

  • Follow the installation instructions.

  • Apply for a student license.

  • When you receive confirmation of your student license, set the license information in DataGrip.

HW0: Non-Programming

Step 1: Initial Files

  1. Create a folder in the project of the form _src, where is your UNI I created an example, which is dff9_src.

  2. Create a file in the directory _HW0.

  3. Copy the Jupyter notebook file from dff9_src/dff9_HW0.ipynb into the directory you created and replace dff9 with your UNI.

  4. Do the same for dff9_HW0.py

Step 2: Jupter Notebook

  • Start Anaconda.

  • Open Jupyter Notebook in Anaconda.

  • Navigate to the directory where you cloned the repository, and then go into the folder you created.

  • Open the notebook (the file ending in .ipynb).

  • The remaining steps in HW0: Non-Programming are in the notebook that you opened.

HW 0: Programming

  • Complete the steps for HW0: Non-Programming.

  • The programming track is not "harder" than non-programming. The initial set up is a little more work, however.

  • Download and install PyCharm. Download and install the professional edition.

  • Follow the instructions to set the license key using the JetBrains account you used to get the DataGrip licenses.

  • Start PyCharm, navigate to and open the project that you cloned from GitHub.

  • Follow the instructions for creating a new virtual Conda environment for the project.

  • Select the root folder in the project, right click and add a new Python Package named _web_src. My example is dff9_web_src.

  • Copy the files from dff9_web_src into the package you created.

  • Follow the instructions for adding a package to your virtual environment. You should add the package flask.

  • Right click on your file application.py that you copied and select run. You will see a console window open and this will show a URL. Copy on the URL.

  • Open a browser. Paste the URL and append '/health'. My URL looks like http://172.20.1.14:5000/health. Yours may be a little different.

  • Hit enter. You should see a health message. Take a screenshot of the browser window and add the file to the directory. My example is ""

Owner
Donald F. Ferguson
Senior Technical Fellow, Chief SW Architect, Ansys, Inc. Adjunct Professor, Dept. of Computer Science, Columbia University. CTO and Co-Founder, Seeka.TV
Donald F. Ferguson
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. StanĀ® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

Vevesta 24 Dec 14, 2022
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022