This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Overview

S22-W4111-HW-1-0:
W4111 - Intro to Databases HW0 and HW1

Introduction

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks.

HW 0 - All Students

You have completed the first step, which is cloning the project template.

Note: You are Columbia students. You should be able to install SW and follow instructions.

MySQL:

  • Download the installation files for MySQL Community Server..

    • Make sure you download for the correct operating system.
    • If you are on Mac make sure you choose the correct architecture. ARM is for Apple silicon. x86 is for other Apple systems.
    • On Windows, you can download and use the MSI.
  • Follow the installation instructions for MySQL. There are official instructions and many online tutorials.

  • Remember your root user ID and password, that you set during installation. Also, choose "Legacy Authentication" when prompted.

    • If you forget your root user or password, you are on your own. The TAs and I will not fix any problems due to forgetting the information.
    • Also, if you say something like, "It did not prompt me for a user ID and password when I instaled ... ..," we will laugh. We will say something like, ""Sure. 20 million MySQL installations asked for the information, but it decide to not to ask you."
    • If you tell us that you are sure that you are entering the correct user ID and password we will laugh. We will say something like, "Which is more likely. That a DATABASE forgot something or" you did?"
  • You only need to install the server. All other SW packages are optional.

Anaconda:

  • I strongly recommend uninstalling any existing version of Anaconda. If you choose not to uninstall previous versions, you may hit issues. You are on your own if you hit issues due to conflicting versions of Anaconda during the semester.

  • Download the most recent version of Ananconda..

  • Follow the installation instructions. Choose "Install for me" when prompted. If you hit a problem and I find your Anaconda installation in the wrong directory, you are on your own. If you say something like, "But, it did not give me that option," you can guess what will happen.

DataGrip:

  • Download DataGrip. Make sure you choose the correct OS and silicon.

  • Follow the installation instructions.

  • Apply for a student license.

  • When you receive confirmation of your student license, set the license information in DataGrip.

HW0: Non-Programming

Step 1: Initial Files

  1. Create a folder in the project of the form _src, where is your UNI I created an example, which is dff9_src.

  2. Create a file in the directory _HW0.

  3. Copy the Jupyter notebook file from dff9_src/dff9_HW0.ipynb into the directory you created and replace dff9 with your UNI.

  4. Do the same for dff9_HW0.py

Step 2: Jupter Notebook

  • Start Anaconda.

  • Open Jupyter Notebook in Anaconda.

  • Navigate to the directory where you cloned the repository, and then go into the folder you created.

  • Open the notebook (the file ending in .ipynb).

  • The remaining steps in HW0: Non-Programming are in the notebook that you opened.

HW 0: Programming

  • Complete the steps for HW0: Non-Programming.

  • The programming track is not "harder" than non-programming. The initial set up is a little more work, however.

  • Download and install PyCharm. Download and install the professional edition.

  • Follow the instructions to set the license key using the JetBrains account you used to get the DataGrip licenses.

  • Start PyCharm, navigate to and open the project that you cloned from GitHub.

  • Follow the instructions for creating a new virtual Conda environment for the project.

  • Select the root folder in the project, right click and add a new Python Package named _web_src. My example is dff9_web_src.

  • Copy the files from dff9_web_src into the package you created.

  • Follow the instructions for adding a package to your virtual environment. You should add the package flask.

  • Right click on your file application.py that you copied and select run. You will see a console window open and this will show a URL. Copy on the URL.

  • Open a browser. Paste the URL and append '/health'. My URL looks like http://172.20.1.14:5000/health. Yours may be a little different.

  • Hit enter. You should see a health message. Take a screenshot of the browser window and add the file to the directory. My example is ""

Owner
Donald F. Ferguson
Senior Technical Fellow, Chief SW Architect, Ansys, Inc. Adjunct Professor, Dept. of Computer Science, Columbia University. CTO and Co-Founder, Seeka.TV
Donald F. Ferguson
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022