A fast, flexible, and performant feature selection package for python.

Overview

linselect

A fast, flexible, and performant feature selection package for python.

Package in a nutshell

It's built on stepwise linear regression

When passed data, the underlying algorithm seeks minimal variable subsets that produce good linear fits to the targets. This approach to feature selection strikes a competitive balance between performance, speed, and memory efficiency.

It has a simple API

A simple API makes it easy to quickly rank a data set's features in terms of their added value to a given fit. This is demoed below, where we learn that we can drop column 1 of X and still obtain a fit to y that captures 97.37% of its variance.

from linselect import FwdSelect
import numpy as np

X = np.array([[1,2,4], [1,1,2], [3,2,1], [10,2,2]])
y = np.array([[1], [-1], [-1], [1]])

selector = FwdSelect()
selector.fit(X, y)

print selector.ordered_features
print selector.ordered_cods
# [2, 0, 1]
# [0.47368422, 0.97368419, 1.0]

X_compressed = X[:, selector.ordered_features[:2]]

It's fast

A full sweep on a 1000 feature count data set runs in 10s on my laptop -- about one million times faster (seriously) than standard stepwise algorithms, which are effectively too slow to run at this scale. A 100 count feature set runs in 0.07s.

from linselect import FwdSelect
import numpy as np
import time

X = np.random.randn(5000, 1000)
y = np.random.randn(5000, 1)

selector = FwdSelect()

t1 = time.time()
selector.fit(X, y)
t2 = time.time()
print t2 - t1
# 9.87492

Its scores reveal your effective feature count

By plotting fitted CODs against ranked feature count, one often learns that seemingly high-dimensional problems can actually be understood using only a minority of the available features. The plot below demonstrates this: A fit to one year of AAPL's stock fluctuations -- using just 3 selected stocks as predictors -- nearly matches the performance of a 49-feature fit. The 3-feature fit arguably provides more insight and is certainly easier to reason about (cf. tutorials for details).

apple stock plot

It's flexible

linselect exposes multiple applications of the underlying algorithm. These allow for:

  • Forward, reverse, and general forward-reverse stepwise regression strategies.
  • Supervised applications aimed at a single target variable or simultaneous prediction of multiple target variables.
  • Unsupervised applications. The algorithm can be applied to identify minimal, representative subsets of an available column set. This provides a feature selection analog of PCA -- importantly, one that retains interpretability.

Under the hood

Feature selection algorithms are used to seek minimal column / feature subsets that capture the majority of the useful information contained within a data set. Removal of a selected subset's complement -- the relatively uninformative or redundant features -- can often result in a significant data compression and improved interpretability.

Stepwise selection algorithms work by iteratively updating a model feature set, one at a time [1]. For example, in a given step of a forward process, one considers all of the features that have not yet been added to the model, and then identifies that which would improve the model the most. This is added, and the process is then repeated until all features have been selected. The features that are added first in this way tend to be those that are predictive and also not redundant with those already included in the predictor set. Retaining only these first selected features therefore provides a convenient method for identifying minimal, informative feature subsets.

In general, identifying the optimal feature to add to a model in a given step requires building and scoring each possible updated model variant. This results in a slow process: If there are n features, O(n^2) models must be built to carry out a full ranking. However, the process can be dramatically sped up in the case of linear regression -- thanks to some linear algebra identities that allow one to efficiently update these models as features are either added or removed from their predictor sets [2,3]. Using these update rules, a full feature ranking can be carried out in roughly the same amount of time that is needed to fit only a single model. For n=1000, this means we get an O(n^2) = O(10^6) speed up! linselect makes use of these update rules -- first identified in [2] -- allowing for fast feature selection sweeps.

[1] Introduction to Statistical Learning by G. James, et al -- cf. chapter 6.

[2] M. Efroymson. Multiple regression analysis. Mathematical methods for digital computers, 1:191–203, 1960.

[3] J. Landy. Stepwise regression for unsupervised learning, 2017. arxiv.1706.03265.

Classes, documentation, tests, license

linselect contains three classes: FwdSelect, RevSelect, and GenSelect. As the names imply, these support efficient forward, reverse, and general forward-reverse search protocols, respectively. Each can be used for both supervised and unsupervised analyses.

Docstrings and basic call examples are illustrated for each class in the ./docs folder.

An FAQ and a running list of tutorials are available at efavdb.com/linselect.

Tests: From the root directory,

python setup.py test

This project is licensed under the terms of the MIT license.

Installation

The package can be installed using pip, from pypi

pip install linselect

or from github

pip install git+git://github.com/efavdb/linselect.git

Author

Jonathan Landy - EFavDB

Acknowledgments: Special thanks to P. Callier, P. Spanoudes, and R. Zhou for providing helpful feedback.

Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023