A fast, flexible, and performant feature selection package for python.

Overview

linselect

A fast, flexible, and performant feature selection package for python.

Package in a nutshell

It's built on stepwise linear regression

When passed data, the underlying algorithm seeks minimal variable subsets that produce good linear fits to the targets. This approach to feature selection strikes a competitive balance between performance, speed, and memory efficiency.

It has a simple API

A simple API makes it easy to quickly rank a data set's features in terms of their added value to a given fit. This is demoed below, where we learn that we can drop column 1 of X and still obtain a fit to y that captures 97.37% of its variance.

from linselect import FwdSelect
import numpy as np

X = np.array([[1,2,4], [1,1,2], [3,2,1], [10,2,2]])
y = np.array([[1], [-1], [-1], [1]])

selector = FwdSelect()
selector.fit(X, y)

print selector.ordered_features
print selector.ordered_cods
# [2, 0, 1]
# [0.47368422, 0.97368419, 1.0]

X_compressed = X[:, selector.ordered_features[:2]]

It's fast

A full sweep on a 1000 feature count data set runs in 10s on my laptop -- about one million times faster (seriously) than standard stepwise algorithms, which are effectively too slow to run at this scale. A 100 count feature set runs in 0.07s.

from linselect import FwdSelect
import numpy as np
import time

X = np.random.randn(5000, 1000)
y = np.random.randn(5000, 1)

selector = FwdSelect()

t1 = time.time()
selector.fit(X, y)
t2 = time.time()
print t2 - t1
# 9.87492

Its scores reveal your effective feature count

By plotting fitted CODs against ranked feature count, one often learns that seemingly high-dimensional problems can actually be understood using only a minority of the available features. The plot below demonstrates this: A fit to one year of AAPL's stock fluctuations -- using just 3 selected stocks as predictors -- nearly matches the performance of a 49-feature fit. The 3-feature fit arguably provides more insight and is certainly easier to reason about (cf. tutorials for details).

apple stock plot

It's flexible

linselect exposes multiple applications of the underlying algorithm. These allow for:

  • Forward, reverse, and general forward-reverse stepwise regression strategies.
  • Supervised applications aimed at a single target variable or simultaneous prediction of multiple target variables.
  • Unsupervised applications. The algorithm can be applied to identify minimal, representative subsets of an available column set. This provides a feature selection analog of PCA -- importantly, one that retains interpretability.

Under the hood

Feature selection algorithms are used to seek minimal column / feature subsets that capture the majority of the useful information contained within a data set. Removal of a selected subset's complement -- the relatively uninformative or redundant features -- can often result in a significant data compression and improved interpretability.

Stepwise selection algorithms work by iteratively updating a model feature set, one at a time [1]. For example, in a given step of a forward process, one considers all of the features that have not yet been added to the model, and then identifies that which would improve the model the most. This is added, and the process is then repeated until all features have been selected. The features that are added first in this way tend to be those that are predictive and also not redundant with those already included in the predictor set. Retaining only these first selected features therefore provides a convenient method for identifying minimal, informative feature subsets.

In general, identifying the optimal feature to add to a model in a given step requires building and scoring each possible updated model variant. This results in a slow process: If there are n features, O(n^2) models must be built to carry out a full ranking. However, the process can be dramatically sped up in the case of linear regression -- thanks to some linear algebra identities that allow one to efficiently update these models as features are either added or removed from their predictor sets [2,3]. Using these update rules, a full feature ranking can be carried out in roughly the same amount of time that is needed to fit only a single model. For n=1000, this means we get an O(n^2) = O(10^6) speed up! linselect makes use of these update rules -- first identified in [2] -- allowing for fast feature selection sweeps.

[1] Introduction to Statistical Learning by G. James, et al -- cf. chapter 6.

[2] M. Efroymson. Multiple regression analysis. Mathematical methods for digital computers, 1:191–203, 1960.

[3] J. Landy. Stepwise regression for unsupervised learning, 2017. arxiv.1706.03265.

Classes, documentation, tests, license

linselect contains three classes: FwdSelect, RevSelect, and GenSelect. As the names imply, these support efficient forward, reverse, and general forward-reverse search protocols, respectively. Each can be used for both supervised and unsupervised analyses.

Docstrings and basic call examples are illustrated for each class in the ./docs folder.

An FAQ and a running list of tutorials are available at efavdb.com/linselect.

Tests: From the root directory,

python setup.py test

This project is licensed under the terms of the MIT license.

Installation

The package can be installed using pip, from pypi

pip install linselect

or from github

pip install git+git://github.com/efavdb/linselect.git

Author

Jonathan Landy - EFavDB

Acknowledgments: Special thanks to P. Callier, P. Spanoudes, and R. Zhou for providing helpful feedback.

BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022