SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

Overview

SNV Pipeline

SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38). The pipeline requires user defined datasets & annotation sources, available tools and input set of vcf files. It generates analysis scripts that can be incorporated into high performance cluster (HPC) computing to process the samples. This results in list of filtered variants per family that can be used for interpreation, reporting and further downstream analysis.

For demonstration purpose below example is presented for GRCh37. However, the same can be replicated for GRCh38.

Installation

git clone https://github.com/ajaarma/snv.git

Required Installation packages

Install anaconda v2.0
Follow this link for installation: https://docs.anaconda.com/anaconda/install/linux/
Conda environment commands
$ conda create --name snv
$ source activate snv
$ conda install python=2.7.16
$ pip install xmltodict
$ pip install dicttoxml

$ conda install -c bioconda gvcfgenotyper
$ conda install -c anaconda gawk	
$ conda install samtools=1.3
$ conda install vcftools=0.1.14
$ conda install bcftools=1.9
$ conda install gcc #(OSX)
$ conda install gcc_linux-64 #(Linux)
$ conda install parallel
$ conda install -c mvdbeek ucsc_tools
** conda-develop -n 
    
    
     /demo/softwares/vep/Plugins/

$ conda install -c r r-optparse
$ conda install -c r r-dplyr
$ conda install -c r r-plyr
$ conda install -c r r-data.table
$ conda install -c aakumar r-readbulk
$ conda install -c bioconda ensembl-vep=100.4
$ vep_install -a cf -s homo_sapiens -y GRCh37 -c 
     
      /demo/softwares/vep/grch37 --CONVERT
$ vep_install -a cf -s homo_sapiens -y GRCh38 -c 
      
       /demo/softwares/vep/grch38 --CONVERT

      
     
    
   

Data directory and datasets

Default datasets provided
1. exac_pli: demo/resources/gnomad/grch37/gnomad.v2.1.1.lof_metrics.by_transcript_forVEP.txt
2. ensembl: demo/resources/ensembl/grch37/ensBioMart_grch37_v98_ENST_lengths_191208.txt
3. region-exons: demo/resources/regions/grch37/hg19_refseq_ensembl_exons_50bp_allMT_hgmd_clinvar_20200519.txt
4. region-pseudo-autosomal: demo/resources/regions/grch37/hg19_non_pseudoautosomal_regions_X.txt
5. HPO: demo/resources/hpo/phenotype_to_genes.tar.gz
Other datasets that require no entry to user-configuration file
6. Curated: 
	6.1. Genelist: demo/resources/curated/NGC_genelist_allNamesOnly-20200519.txt
	6.2. Somatic mosaicism genes: demo/resources/curated/haem_somatic_mosaicism_genes_20191015.txt
	6.3. Imprinted gene list: demo/resources/curated/imprinted_genes_20200424.txt
	6.4. Polymorphic gene list: demo/resources/curated/polymorphic_genes_20200509.txt
7. OMIM: demo/resources/omim/omim_20200421_geneInfoBase.txt

Download link for following dataset and place them in corresponding directories as shown

' | awk -v OFS="\t" '{ if(/^#/){ print }else{ print $1,$2,$3,$4,$5,$6,$7,"ID="$3";"$8 } }' | bgzip -c > hgmd_pro_2019.4_hg19_wID.vcf.gz $ bcftools index -t hgmd_pro_2019.4_hg19_wID.vcf.gz $ bcftools index hgmd_pro_2019.4_hg19_wID.vcf.gz Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz Edit the user config flat file CONFIG/UserConfig.txt : hgmd=hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz 8. CLINVAR: Download link: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz.tbi Put it in this directory: demo/resources/clinvar/grch37/clinvar_20200506.vcf.gz Edit the user config flat file CONFIG/UserConfig.txt : clinvar=clinvar/grch37/clinvar_20200506.vcf.gz ">
1. HPO: Extract HPO phenotypes mapping:
	$ cd 
   
    /demo/resources/hpo/
	$ tar -zxvf phenotypes_to_genes.tar.gz 

2. REFERENCE SEQUENCE GENOME (FASTA file alongwith Index)
	Download link: https://drive.google.com/drive/folders/1Ro3pEYhVdYkMmteSr8YRPFeTvb_K0lVf?usp=sharing
	Download file: Homo_sapiens.GRCh37.74.dna.fasta
		Get the corresponding index and dict files: *.fai and *.dict
	Put this in folder: demo/resources/genomes/grch37/Homo_sapiens.GRCh37.74.dna.fasta

3. GNOMAD
	Download link (use wget): 
	Genomes: https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/genomes/gnomad.genomes.r2.1.1.sites.vcf.bgz
	Exomes: https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
	Put it in this folder: 
		demo/resources/gnomad/grch37/gnomad.genomes.r2.1.1.sites.vcf.bgz
		demo/resources/gnomad/grch37/gnomad.exomes.r2.1.1.sites.vcf.bgz
	Edit User config flat file CONFIG/UserConfig.txt : 
		gnomad_g=gnomad/grch37/gnomad.genomes.r2.1.1.sites.vcf.bgz
		gnomad_e=gnomad/grch37/gnomad.exomes.r2.1.1.sites.vcf.bgz

4. ExAC:
	Download Link: https://drive.google.com/drive/folders/11Ya8XfAxOYmlKZ9mN8A16IDTLHdHba_0?usp=sharing
	Download file: ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
		also the index files (*.csi and *.tbi)
	Put it in this folder as: 
		demo/resources/exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
	Edit User config flat file CONFIG/UserConfig.txt : 
		exac=exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
		exac_t=exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz

5. CADD:
	Download link (use wget):
		https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/whole_genome_SNVs.tsv.gz
		https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/InDels.tsv.gz
		(Also download the corresponding tabix index files as well)
	Put it in this directory: 
		demo/resources/cadd/grch37/whole_genome_SNVs.tsv.gz
		demo/resource/cadd/grch37/InDels.tsv.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		cadd_snv=cadd/grch37/whole_genome_SNVs.tsv.gz
		cadd_indel=cadd/grch37/InDels.tsv.gz

6. REVEL:
	Download link: https://drive.google.com/drive/folders/12Tl1YU5bI-By_VawTPVWHef7AXzn4LuP?usp=sharing
	Download file: new_tabbed_revel.tsv.gz
	         Also the index file: *.tbi
	Put it in this directory: demo/resources/revel/grch37/new_tabbed_revel.tsv.gz
	Edit the user config flat file CONFIG/UserConfig.txt : 
		revel=revel/grch37/new_tabbed_revel.tsv.gz

7. HGMD:
	Download link: http://www.hgmd.cf.ac.uk/ac/index.php (Require personal access login)
	Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19.vcf

	Use this command to process HGMD file inside this directory:
		$ cat hgmd_pro_2019.4_hg19.vcf | sed '/##comment=.*\"/a  ##INFO=
    
     ' | awk -v OFS="\t" '{ if(/^#/){ print }else{ print $1,$2,$3,$4,$5,$6,$7,"ID="$3";"$8 } }' | bgzip -c  > hgmd_pro_2019.4_hg19_wID.vcf.gz
		$ bcftools index -t hgmd_pro_2019.4_hg19_wID.vcf.gz
		$ bcftools index hgmd_pro_2019.4_hg19_wID.vcf.gz	

	Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		hgmd=hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz

8. CLINVAR:
	Download link: 
		https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz
		https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz.tbi
	Put it in this directory: demo/resources/clinvar/grch37/clinvar_20200506.vcf.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		clinvar=clinvar/grch37/clinvar_20200506.vcf.gz

    
   
Customized Curated Annotation sets
Default present with this distribution. Can be found in XML file with these tags:
	(1) GeneList: 
   
    
	(2) Somatic mosaicism genes: 
    
     
	(3) Imprinted genes: 
     
      
	(4) Polymorphic genes: 
      
       
	(5) HPO terms: 
       
         (6) OMIM: 
         
        
       
      
     
    
   

Activate the conda environment

$ source activate snv

Step - 1:

1. Edit CONFIG/UserConfig.txt: 
	(a) Add the absolute path prefix for the resources directory with tag: resourceDir. 
	    An example can be seen in CONFIG/Example-UserConfig.txt file.
	(b) Manually check if datasets corresponding to other field tags are correctly downloaded and 
	    put in respective folders.
2. Create user defined XML file from input User Configuration flat file and Base-XML file
Command:
$ python createAnalysisXML.py -u 
   
     
		    	      -b 
    
      
		              -o 
     

     
    
   
Example:
$ python createAnalysisXML.py -u CONFIG/UserConfig.txt 
		       	      -b CONFIG/Analysis_base_grch37.xml 
		              -o CONFIG/Analysis_user_grch37.xml
Outputs:
CONFIG/Analysis_user_grch37.xml

Step-2:

1. Put the respective vcf files in the directory. For example: demo/example/vcf/ 
2. Create manifest file in same format as shown in demo/example/example_manifest.txt
3. Assign gender to each family members (illumina or sample id). For example: demo/example/example_genders.txt
4. List of all the family ids that needed to be analyzed.
         For e.g: demo/example/manifest/example_family_analysis.txt

Step -3:

Generate all the shell scripts that can be incorporated into user specific HPC cluster network. For e.g: Slurm/PBS/LSF network.

Command:
$ python processSNV.py 	-a 
   
    
	    		-p 
    
     
	      		-m 
     
      
	     		-e 
      
       
			-w 
       
         -g 
        
          -d 
         
           -f 
          
            -s 
           
             -r 
             
            
           
          
         
        
       
      
     
    
   
Example:
$ python processSNV.py 	-a CONFIG/Analysis_user_grch37.xml \ 
			-p 20210326 \
			-m 
   
    /demo/example/example_manifest.txt \
			-e gvcfGT \
			-w 
    
     /demo/example/ \
			-g 
     
      /demo/example/example_genders.txt \
			-d 
      
       /demo/example/exeter_samples_norm.fof \
			-f 
       
        /demo/example/manifest/example_family_analysis.txt \ -s 
        
         /demo/example/manifest/example_family.fof \ -r 
         
          /demo/example/manifest/example_family_header.txt (optional) 
         
        
       
      
     
    
   
Outputs:
Two scripts in the directory: 
   
    /demo/example/20210326/tmp_binaries/
Launch the scripts in these 2 stages sequentially after each of them gets finished.

   (1) genotypeAndAnnotate_chr%.sh where %=1..22,X,Y and MT
	scatter the annotation and frequency filtering per chromosome for all families.
   (2) mergeAndFilter.sh:
	Merge all the chromosome and apply inheritance filtering.

   

Step-4

Final output of list of filtered variant is present in:

   
    /demo/example/20210326/fam_filter/
    
     /
     
      .filt_
      
       .txt

      
     
    
   
For any questions/issues/bugs please mail us at:
Owner
East Genomics
Bringing together genomic medicine across the East Midlands and East of England
East Genomics
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it

Battery Intelligence Lab 20 Sep 28, 2022
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

Xiao Xiao 9 Aug 09, 2022
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022