LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

Overview

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

Based on the work by Smith et al. (2021)

Querying both structured and unstructured data via a single common query interface such as SQL or natural language has been a long standing research goal. Moreover, as methods for extracting information from unstructured data become ever more powerful, the desire to integrate the output of such extraction processes with "clean", structured data grows. We are convinced that for successful integration into databases, such extracted information in the form of "triples" needs to be both 1) of high quality and 2) have the necessary generality to link up with varying forms of structured data. It is the combination of both these aspects, which heretofore have been usually treated in isolation, where our approach breaks new ground.

The cornerstone of our work is a novel, generic method for extracting open information triples from unstructured text, using a combination of linguistics and learning-based extraction methods, thus uniquely balancing both precision and recall. Our system called LILLIE (LInked Linguistics and Learning-Based Information Extractor) uses dependency tree modification rules to refine triples from a high-recall learning-based engine, and combines them with syntactic triples from a high-precision engine to increase effectiveness. In addition, our system features several augmentations, which modify the generality and the degree of granularity of the output triples. Even though our focus is on addressing both quality and generality simultaneously, our new method substantially outperforms current state-of-the-art systems on the two widely-used CaRB and Re-OIE16 benchmark sets for information extraction.

Installation

Requires Python 3.6.9.

  1. pip install -r requirements.txt
  2. python3 -m spacy download en_core_web_md
  3. Clone ClausIE to ./learning_based/pyclausie (https://github.com/AnthonyMRios/pyclausie)
  4. Install with: cd ./learning_based/pyclausie python3 setup.py install
  5. Clone OpenIE5 to ./learning_based/OpenIE-Standalone (https://github.com/dair-iitd/OpenIE-standalone)
  6. Run OIE5 with: cd ./learning_based/OpenIE-standalone java -Xmx16g -jar openie-assembly-5.0-SNAPSHOT.jar --httpPort 9000
  7. Download Stanford CoreNLP Server 3.9.2 to ./rule_based/parser (https://stanfordnlp.github.io/CoreNLP/history.html)
  8. Run the parser: java -mx6g -cp "./rule_based/parser/*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 10000 -timeout 30000
  9. Run the learning-based extractor: python3 ./learning_based/paralleloie.py -i data/pubmedabstracts.json
  10. Run the rule-based extractor-refiner: python3 ./rule_based/extract_refine.py -i extracted_triples_learning.csv
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
SPCL 48 Dec 12, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023