2019 Data Science Bowl

Overview

2019 Data Science Bowl

Uncover the factors to help measure how young children learn

Screenshot

Ignite Possibilities.

Uncover new insights in early childhood education and how media can support learning outcomes. Participate in our fifth annual Data Science Bowl, presented by Booz Allen Hamilton and Kaggle.

PBS KIDS, a trusted name in early childhood education for decades, aims to gain insights into how media can help children learn important skills for success in school and life. In this challenge, you’ll use anonymous gameplay data, including knowledge of videos watched and games played, from the PBS KIDS Measure Up! app, a game-based learning tool developed as a part of the CPB-PBS Ready To Learn Initiative with funding from the U.S. Department of Education. Competitors will be challenged to predict scores on in-game assessments and create an algorithm that will lead to better-designed games and improved learning outcomes. Your solutions will aid in discovering important relationships between engagement with high-quality educational media and learning processes.

Data Science Bowl is the world’s largest data science competition focused on social good. Each year, this competition gives Kagglers a chance to use their passion to change the world. Over the last four years, more than 50,000+ Kagglers have submitted over 114,000+ submissions, to improve everything from lung cancer and heart disease detection to ocean health.

For more information on the Data Science Bowl, please visit www.DataScienceBowl.com

Where does the data for the competition come from?

The data used in this competition is anonymous, tabular data of interactions with the PBS KIDS Measure Up! app. Select data, such as a user’s in-app assessment score or their path through the game, is collected by the PBS KIDS Measure Up! app, a game-based learning tool.

PBS KIDS is committed to creating a safe and secure environment that family members of all ages can enjoy. The PBS KIDS Measure Up! app does not collect any personally identifying information, such as name or location. All of the data used in the competition is anonymous. To view the full PBS KIDS privacy policy, please visit: pbskids.org/privacy.

No one will be able to download the entire data set and the participants do not have access to any personally identifiable information about individual users. The Data Science Bowl and the use of data for this year’s competition has been reviewed to ensure that it meets requirements of applicable child privacy regulations by PRIVO, a leading global industry expert in children’s online privacy.

What is the PBS KIDS Measure Up! app?

Screenshot

In the PBS KIDS Measure Up! app, children ages 3 to 5 learn early STEM concepts focused on length, width, capacity, and weight while going on an adventure through Treetop City, Magma Peak, and Crystal Caves. Joined by their favorite PBS KIDS characters, children can also collect rewards and unlock digital toys as they play. To learn more about PBS KIDS Measure Up!, please click here.

PBS KIDS and the PBS KIDS Logo are registered trademarks of PBS. Used with permission. The contents of PBS KIDS Measure Up! were developed under a grant from the Department of Education. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. The app is funded by a Ready To Learn grant (PR/AWARD No. U295A150003, CFDA No. 84.295A) provided by the Department of Education to the Corporation for Public Broadcasting.

My Solution 460 Features | Simple | Easy | Less_overfit | Fast

Screenshot

Simple, easy and fast and less overfitting solution with 460 features

This notebook shows problem solving approach using LightGBM Regression and 890 features computed by bruno aquino in the following notebook which are later reduced to 460 features in my approach.

https://www.kaggle.com/braquino/890-features

It also uses the regression coefficients from following notebook by artgor.

https://www.kaggle.com/artgor/quick-and-dirty-regression

Apart from these i also have included resultant LightGBM parameters from exhaustive parameter tuning.

If you find this notebook helpful please press that thumbs up button and thank you :)

PLEASE NOTE THIS IMPORTANT POINT "DON'T BELIEVE IN PUBLIC LB" IT'S ONLY 14% of real data that's private!! We should build a model that's less overfittig and still finding the good results."

Your score will be different for different submissions that's because of randomness in gradient boosting! and that's completely normal you must focus on reducing overfitting, gather as much data as possible and ofcourse reduce the number of features as much as possible without sacrificing model validation score and that's exactly what i've done below :)

Thank you!

Owner
Deepak Nandwani
A Machine Learning and Data Science Engineer, my goal is to make a +ve impact on millions of people's daily lives & to be hyper-optimistic about the future.
Deepak Nandwani
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
pyhsmm MITpyhsmm - Bayesian inference in HSMMs and HMMs. MIT

Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli

Matthew Johnson 527 Dec 04, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

Nguyễn Quang Huy 5 Sep 28, 2022
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database

Galvanalyser is a system for automatically storing data generated by battery cycling machines in a database, using a set of "harvesters", whose job it

Battery Intelligence Lab 20 Sep 28, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022