Building house price data pipelines with Apache Beam and Spark on GCP

Overview

house-price-etl-pipeline

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

Basic flow of the ETL pipeline

The ETL pipelines are built with both Apache Beam using Cloud Dataflow and Spark using Cloud Dataproc for loading real estate transactions data into BigQuery, and the data can be visualized in Data Studio. The project also uses Cloud Function to monitor if a new file is uploaded in the GCS bucket and trigger the pipeline automatically.

1. Get Started

The house price data

Actual price registration of real estate transactions data in Taiwan has been released since 2012, which refers to the transaction information includes: position and area of real estate, total price of land and building, parking space related information, etc. We can use the data to observe the changes in house prices over time or predict the house price trend in various regions.

Setup and requirements

Set up on Google Cloud Platform:

Project is created with:

  • Python version: 3.7
  • Apache beam version: 2.33.0
  • Pyspark version: 3.2.0

2. Use a web crawler to download the historical data

Run the web crawler to download historical actual price data in csv format, and upload the files to the Google Cloud Storage bucket.

First, set up the local Python development environment and install packages from requirements.txt:

$ pip install -r requirements.txt

Open crawler.py file, replace YOUR_DIR_PATH with a local directory to store download data, replace projectID with your Google Cloud project ID, and replace GCS_BUCKET_NAME with the name of your Cloud Storage bucket. Then run the web crawler:

$ python crawler.py

3. Build ETL pipelines on GCP

There are two versions of ETL pipelines that read source files from Cloud Storage, apply some transformations and load the data into BigQuery. One of the ETL pipelines based on Apache beam uses Dataflow to process the data for analytics of land transaction. The other ETL pipeline based on Apache Spark uses Dataproc to proccess the data for analytics of building transaction.

Let’s start by opening a session in Google Cloud Shell. Run the following commands to set the project property with your project ID.

$ gcloud config set project [projectID]

Run the pipeline using Dataflow for land data

The file etl_pipeline_beam.py contains the Python code for the etl pipeline with Apache beam. We can upload the file using the Cloud Shell Editor.

Run actual_price_etl.py to create a Dataflow job which runs the DataflowRunner. Notice that we need to set the Cloud Storage location of the staging and template file, and set the region in which the created job should run.

$ python etl_pipeline_beam.py \
--project=projectID \
--region=region \
--runner=DataflowRunner \
--staging_location=gs://BUCKET_NAME/staging \
--temp_location=gs://BUCKET_NAME/temp \
--save_main_session

Run the pipeline using Dataproc for building data

The file etl_pipeline_spark.py contains the Python code for the etl pipeline with Apache Spark. We can upload the file using the Cloud Shell Editor.

Submit etl_pipeline_spark.py to your Dataproc cluster to run the Spark job. We need to set the cluster name, and set the region in which the created job should run. To write data to Bigquery, the jar file of spark-bigquery-connector must be available at runtime.

$ gcloud dataproc jobs submit pyspark etl_pipeline_spark.py \
--cluster=cluster-name \
--region=region \
--jars=gs://spark-lib/bigquery/spark-bigquery-latest_2.12.jar

4. Use a Cloud Function to trigger Cloud Dataflow

Use the Cloud Fucntion to automatically trigger the Dataflow pipeline when a new file arrives in the GCS bucket.

First, we need to create a Dataflow template for runnig the data pipeline with REST API request called by the Cloud Function. The file etl_pipeline_beam_auto.py contains the Python code for the etl pipeline with Apache beam. We can upload the file using the Cloud Shell Editor.

Create a Dataflow template

Use etl_pipeline_beam_auto.py to create a Dataflow template. Note that we need to set the Cloud Storage location of the staging, temporary and template file, and set the region in which the created job should run.

python -m etl_pipeline_beam_auto \
    --runner DataflowRunner \
    --project projectID \
    --region=region \
    --staging_location gs://BUCKET_NAME/staging \
    --temp_location gs://BUCKET_NAME/temp \
    --template_location gs://BUCKET_NAME/template \
    --save_main_session

Create a Cloud Function

Go to the Cloud Function GUI and manually create a function, set Trigger as Cloud Storage, Event Type as Finalize/Create , and choose the GCS bucket which needs to be monitored. Next, write the function itself, use the code in main.py file. Note that the user defined parameter input is passed to the Dataflow pipeline job. Finally, click on depoly and now your function is ready to execute and start the Dataflow pipeline when a file is uploaded in your bucket.

Results

When each ETL pipeline is completed and succeeded, navigating to BigQuery to verify that the data is successfully loaded in the table.

BigQuery - land_data table

Now the data is ready for analytics and reporting. Here, we calculate average price by year in BigQuery, and visualize the results in Data Studio.

Data Studio - Average land price by year in Yilan County

Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como código Utuilizando um cluster Kubernetes na Azure Ingestão

Otacilio Filho 4 Jan 23, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022