Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview

Overview

PyTorch 0.4.1 | Python 3.6.5

Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein gradient penalty, least squares, deep regret analytic, bounded equilibrium, relativistic, f-divergence, Fisher, and information generative adversarial networks (GANs), and standard, variational, and bounded information rate variational autoencoders (VAEs).

Paper links are supplied at the beginning of each file with a short summary of the paper. See src folder for files to run via terminal, or notebooks folder for Jupyter notebook visualizations via your local browser. The main file changes can be see in the train, train_D, and train_G of the Trainer class, although changes are not completely limited to only these two areas (e.g. Wasserstein GAN clamps weight in the train function, BEGAN gives multiple outputs from train_D, fGAN has a slight modification in viz_loss function to indicate method used in title).

All code in this repository operates in a generative, unsupervised manner on binary (black and white) MNIST. The architectures are compatible with a variety of datatypes (1D, 2D, square 3D images). Plotting functions work with binary/RGB images. If a GPU is detected, the models use it. Otherwise, they default to CPU. VAE Trainer classes contain methods to visualize latent space representations (see make_all function).

Usage

To initialize an environment:

python -m venv env  
. env/bin/activate  
pip install -r requirements.txt  

For playing around in Jupyer notebooks:

jupyter notebook

To run from Terminal:

cd src
python bir_vae.py

New Models

One of the primary purposes of this repository is to make implementing deep generative model (i.e., GAN/VAE) variants as easy as possible. This is possible because, typically but not always (e.g. BIRVAE), the proposed modifications only apply to the way loss is computed for backpropagation. Thus, the core training class is structured in such a way that most new implementations should only require edits to the train_D and train_G functions of GAN Trainer classes, and the compute_batch function of VAE Trainer classes.

Suppose we have a non-saturating GAN and we wanted to implement a least-squares GAN. To do this, all we have to do is change two lines:

Original (NSGAN)

def train_D(self, images):
  ...
  D_loss = -torch.mean(torch.log(DX_score + 1e-8) + torch.log(1 - DG_score + 1e-8))

  return D_loss
def train_G(self, images):
  ...
  G_loss = -torch.mean(torch.log(DG_score + 1e-8))

  return G_loss

New (LSGAN)

def train_D(self, images):
  ...
  D_loss = (0.50 * torch.mean((DX_score - 1.)**2)) + (0.50 * torch.mean((DG_score - 0.)**2))

  return D_loss
def train_G(self, images):
  ...
  G_loss = 0.50 * torch.mean((DG_score - 1.)**2)

  return G_loss

Model Architecture

The architecture chosen in these implementations for both the generator (G) and discriminator (D) consists of a simple, two-layer feedforward network. While this will give sensible output for MNIST, in practice it is recommended to use deep convolutional architectures (i.e. DCGANs) to get nicer outputs. This can be done by editing the Generator and Discriminator classes for GANs, or the Encoder and Decoder classes for VAEs.

Visualization

All models were trained for 25 epochs with hidden dimension 400, latent dimension 20. Other implementation specifics are as close to the respective original paper (linked) as possible.

Model Epoch 1 Epoch 25 Progress Loss
MMGAN
NSGAN
WGAN
WGPGAN
DRAGAN
BEGAN
LSGAN
RaNSGAN
FisherGAN
InfoGAN
f-TVGAN
f-PearsonGAN
f-JSGAN
f-ForwGAN
f-RevGAN
f-HellingerGAN
VAE
BIRVAE

To Do

Models: CVAE, denoising VAE, adversarial autoencoder | Bayesian GAN, Self-attention GAN, Primal-Dual Wasserstein GAN
Architectures: Add DCGAN option
Datasets: Beyond MNIST

Owner
Shayne O'Brien
NLP / Machine Learning / Network Science. Moved from MIT to Apple 06/2019
Shayne O'Brien
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022