Visual Attention based OCR

Overview

Attention-OCR

Authours: Qi Guo and Yuntian Deng

Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to height 32 while preserving aspect ratio). Then an LSTM is stacked on top of the CNN. Finally, an attention model is used as a decoder for producing the final outputs.

example image 0

Prerequsites

Most of our code is written based on Tensorflow, but we also use Keras for the convolution part of our model. Besides, we use python package distance to calculate edit distance for evaluation. (However, that is not mandatory, if distance is not installed, we will do exact match).

Tensorflow: Installation Instructions (tested on 0.12.1)

Distance (Optional):

wget http://www.cs.cmu.edu/~yuntiand/Distance-0.1.3.tar.gz
tar zxf Distance-0.1.3.tar.gz
cd distance; sudo python setup.py install

Usage:

Note: We assume that the working directory is Attention-OCR.

Train

Data Preparation

We need a file (specified by parameter data-path) containing the path of images and the corresponding characters, e.g.:

path/to/image1 abc
path/to/image2 def

And we also need to specify a data-base-dir parameter such that we read the images from path data-base-dir/path/to/image. If data-path contains absolute path of images, then data-base-dir needs to be set to /.

A Toy Example

For a toy example, we have prepared a training dataset of the specified format, which is a subset of Synth 90k

wget http://www.cs.cmu.edu/~yuntiand/sample.tgz
tar zxf sample.tgz
python src/launcher.py --phase=train --data-path=sample/sample.txt --data-base-dir=sample --log-path=log.txt --no-load-model

After a while, you will see something like the following output in log.txt:

...
2016-06-08 20:47:22,335 root  INFO     Created model with fresh parameters.
2016-06-08 20:47:52,852 root  INFO     current_step: 0
2016-06-08 20:48:01,253 root  INFO     step_time: 8.400597, step perplexity: 38.998714
2016-06-08 20:48:01,385 root  INFO     current_step: 1
2016-06-08 20:48:07,166 root  INFO     step_time: 5.781749, step perplexity: 38.998445
2016-06-08 20:48:07,337 root  INFO     current_step: 2
2016-06-08 20:48:12,322 root  INFO     step_time: 4.984972, step perplexity: 39.006730
2016-06-08 20:48:12,347 root  INFO     current_step: 3
2016-06-08 20:48:16,821 root  INFO     step_time: 4.473902, step perplexity: 39.000267
2016-06-08 20:48:16,859 root  INFO     current_step: 4
2016-06-08 20:48:21,452 root  INFO     step_time: 4.593249, step perplexity: 39.009864
2016-06-08 20:48:21,530 root  INFO     current_step: 5
2016-06-08 20:48:25,878 root  INFO     step_time: 4.348195, step perplexity: 38.987707
2016-06-08 20:48:26,016 root  INFO     current_step: 6
2016-06-08 20:48:30,851 root  INFO     step_time: 4.835423, step perplexity: 39.022887

Note that it takes quite a long time to reach convergence, since we are training the CNN and attention model simultaneously.

Test and visualize attention results

The test data format shall be the same as training data format. We have also prepared a test dataset of the specified format, which includes ICDAR03, ICDAR13, IIIT5k and SVT.

wget http://www.cs.cmu.edu/~yuntiand/evaluation_data.tgz
tar zxf evaluation_data.tgz

We also provide a trained model on Synth 90K:

wget http://www.cs.cmu.edu/~yuntiand/model.tgz
tar zxf model.tgz
python src/launcher.py --phase=test --visualize --data-path=evaluation_data/svt/test.txt --data-base-dir=evaluation_data/svt --log-path=log.txt --load-model --model-dir=model --output-dir=results

After a while, you will see something like the following output in log.txt:

2016-06-08 22:36:31,638 root  INFO     Reading model parameters from model/translate.ckpt-47200
2016-06-08 22:36:40,529 root  INFO     Compare word based on edit distance.
2016-06-08 22:36:41,652 root  INFO     step_time: 1.119277, step perplexity: 1.056626
2016-06-08 22:36:41,660 root  INFO     1.000000 out of 1 correct
2016-06-08 22:36:42,358 root  INFO     step_time: 0.696687, step perplexity: 2.003350
2016-06-08 22:36:42,363 root  INFO     1.666667 out of 2 correct
2016-06-08 22:36:42,831 root  INFO     step_time: 0.466550, step perplexity: 1.501963
2016-06-08 22:36:42,835 root  INFO     2.466667 out of 3 correct
2016-06-08 22:36:43,402 root  INFO     step_time: 0.562091, step perplexity: 1.269991
2016-06-08 22:36:43,418 root  INFO     3.366667 out of 4 correct
2016-06-08 22:36:43,897 root  INFO     step_time: 0.477545, step perplexity: 1.072437
2016-06-08 22:36:43,905 root  INFO     4.366667 out of 5 correct
2016-06-08 22:36:44,107 root  INFO     step_time: 0.195361, step perplexity: 2.071796
2016-06-08 22:36:44,127 root  INFO     5.144444 out of 6 correct

Example output images in results/correct (the output directory is set via parameter output-dir and the default is results): (Look closer to see it clearly.)

Format: Image index (predicted/ground truth) Image file

Image 0 (j/j): example image 0

Image 1 (u/u): example image 1

Image 2 (n/n): example image 2

Image 3 (g/g): example image 3

Image 4 (l/l): example image 4

Image 5 (e/e): example image 5

Parameters:

  • Control

    • phase: Determine whether to train or test.
    • visualize: Valid if phase is set to test. Output the attention maps on the original image.
    • load-model: Load model from model-dir or not.
  • Input and output

    • data-base-dir: The base directory of the image path in data-path. If the image path in data-path is absolute path, set it to /.
    • data-path: The path containing data file names and labels. Format per line: image_path characters.
    • model-dir: The directory for saving and loading model parameters (structure is not stored).
    • log-path: The path to put log.
    • output-dir: The path to put visualization results if visualize is set to True.
    • steps-per-checkpoint: Checkpointing (print perplexity, save model) per how many steps
  • Optimization

    • num-epoch: The number of whole data passes.
    • batch-size: Batch size. Only valid if phase is set to train.
    • initial-learning-rate: Initial learning rate, note the we use AdaDelta, so the initial value doe not matter much.
  • Network

    • target-embedding-size: Embedding dimension for each target.
    • attn-use-lstm: Whether or not use LSTM attention decoder cell.
    • attn-num-hidden: Number of hidden units in attention decoder cell.
    • attn-num-layers: Number of layers in attention decoder cell. (Encoder number of hidden units will be attn-num-hidden*attn-num-layers).
    • target-vocab-size: Target vocabulary size. Default is = 26+10+3 # 0: PADDING, 1: GO, 2: EOS, >2: 0-9, a-z

References

Convert a formula to its LaTex source

What You Get Is What You See: A Visual Markup Decompiler

Torch attention OCR

Owner
Yuntian Deng
Yuntian Deng
Face Anonymizer - FaceAnonApp v1.0

Face Anonymizer - FaceAnonApp v1.0 Blur faces from image and video files in /data/files folder. Contents Repo of the source files for the FaceAnonApp.

6 Apr 18, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Real Time Object Recognition From your Screen Desktop . In this post, I will explain how to build a simply program to detect objects from you desktop

Ruslan Magana Vsevolodovna 2 Sep 28, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
Handwritten Number Recognition using CNN and Character Segmentation

Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an

Sparsha Saha 17 Aug 25, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Read-only mirror of https://gitlab.gnome.org/GNOME/ocrfeeder

================================= OCRFeeder - A Complete OCR Suite ================================= OCRFeeder is a complete Optical Character Recogn

GNOME Github Mirror 81 Dec 23, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
Official code for ROCA: Robust CAD Model Retrieval and Alignment from a Single Image (CVPR 2022)

ROCA: Robust CAD Model Alignment and Retrieval from a Single Image (CVPR 2022) Code release of our paper ROCA. Check out our video, paper, and website

123 Dec 25, 2022
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022