Visual Attention based OCR

Overview

Attention-OCR

Authours: Qi Guo and Yuntian Deng

Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to height 32 while preserving aspect ratio). Then an LSTM is stacked on top of the CNN. Finally, an attention model is used as a decoder for producing the final outputs.

example image 0

Prerequsites

Most of our code is written based on Tensorflow, but we also use Keras for the convolution part of our model. Besides, we use python package distance to calculate edit distance for evaluation. (However, that is not mandatory, if distance is not installed, we will do exact match).

Tensorflow: Installation Instructions (tested on 0.12.1)

Distance (Optional):

wget http://www.cs.cmu.edu/~yuntiand/Distance-0.1.3.tar.gz
tar zxf Distance-0.1.3.tar.gz
cd distance; sudo python setup.py install

Usage:

Note: We assume that the working directory is Attention-OCR.

Train

Data Preparation

We need a file (specified by parameter data-path) containing the path of images and the corresponding characters, e.g.:

path/to/image1 abc
path/to/image2 def

And we also need to specify a data-base-dir parameter such that we read the images from path data-base-dir/path/to/image. If data-path contains absolute path of images, then data-base-dir needs to be set to /.

A Toy Example

For a toy example, we have prepared a training dataset of the specified format, which is a subset of Synth 90k

wget http://www.cs.cmu.edu/~yuntiand/sample.tgz
tar zxf sample.tgz
python src/launcher.py --phase=train --data-path=sample/sample.txt --data-base-dir=sample --log-path=log.txt --no-load-model

After a while, you will see something like the following output in log.txt:

...
2016-06-08 20:47:22,335 root  INFO     Created model with fresh parameters.
2016-06-08 20:47:52,852 root  INFO     current_step: 0
2016-06-08 20:48:01,253 root  INFO     step_time: 8.400597, step perplexity: 38.998714
2016-06-08 20:48:01,385 root  INFO     current_step: 1
2016-06-08 20:48:07,166 root  INFO     step_time: 5.781749, step perplexity: 38.998445
2016-06-08 20:48:07,337 root  INFO     current_step: 2
2016-06-08 20:48:12,322 root  INFO     step_time: 4.984972, step perplexity: 39.006730
2016-06-08 20:48:12,347 root  INFO     current_step: 3
2016-06-08 20:48:16,821 root  INFO     step_time: 4.473902, step perplexity: 39.000267
2016-06-08 20:48:16,859 root  INFO     current_step: 4
2016-06-08 20:48:21,452 root  INFO     step_time: 4.593249, step perplexity: 39.009864
2016-06-08 20:48:21,530 root  INFO     current_step: 5
2016-06-08 20:48:25,878 root  INFO     step_time: 4.348195, step perplexity: 38.987707
2016-06-08 20:48:26,016 root  INFO     current_step: 6
2016-06-08 20:48:30,851 root  INFO     step_time: 4.835423, step perplexity: 39.022887

Note that it takes quite a long time to reach convergence, since we are training the CNN and attention model simultaneously.

Test and visualize attention results

The test data format shall be the same as training data format. We have also prepared a test dataset of the specified format, which includes ICDAR03, ICDAR13, IIIT5k and SVT.

wget http://www.cs.cmu.edu/~yuntiand/evaluation_data.tgz
tar zxf evaluation_data.tgz

We also provide a trained model on Synth 90K:

wget http://www.cs.cmu.edu/~yuntiand/model.tgz
tar zxf model.tgz
python src/launcher.py --phase=test --visualize --data-path=evaluation_data/svt/test.txt --data-base-dir=evaluation_data/svt --log-path=log.txt --load-model --model-dir=model --output-dir=results

After a while, you will see something like the following output in log.txt:

2016-06-08 22:36:31,638 root  INFO     Reading model parameters from model/translate.ckpt-47200
2016-06-08 22:36:40,529 root  INFO     Compare word based on edit distance.
2016-06-08 22:36:41,652 root  INFO     step_time: 1.119277, step perplexity: 1.056626
2016-06-08 22:36:41,660 root  INFO     1.000000 out of 1 correct
2016-06-08 22:36:42,358 root  INFO     step_time: 0.696687, step perplexity: 2.003350
2016-06-08 22:36:42,363 root  INFO     1.666667 out of 2 correct
2016-06-08 22:36:42,831 root  INFO     step_time: 0.466550, step perplexity: 1.501963
2016-06-08 22:36:42,835 root  INFO     2.466667 out of 3 correct
2016-06-08 22:36:43,402 root  INFO     step_time: 0.562091, step perplexity: 1.269991
2016-06-08 22:36:43,418 root  INFO     3.366667 out of 4 correct
2016-06-08 22:36:43,897 root  INFO     step_time: 0.477545, step perplexity: 1.072437
2016-06-08 22:36:43,905 root  INFO     4.366667 out of 5 correct
2016-06-08 22:36:44,107 root  INFO     step_time: 0.195361, step perplexity: 2.071796
2016-06-08 22:36:44,127 root  INFO     5.144444 out of 6 correct

Example output images in results/correct (the output directory is set via parameter output-dir and the default is results): (Look closer to see it clearly.)

Format: Image index (predicted/ground truth) Image file

Image 0 (j/j): example image 0

Image 1 (u/u): example image 1

Image 2 (n/n): example image 2

Image 3 (g/g): example image 3

Image 4 (l/l): example image 4

Image 5 (e/e): example image 5

Parameters:

  • Control

    • phase: Determine whether to train or test.
    • visualize: Valid if phase is set to test. Output the attention maps on the original image.
    • load-model: Load model from model-dir or not.
  • Input and output

    • data-base-dir: The base directory of the image path in data-path. If the image path in data-path is absolute path, set it to /.
    • data-path: The path containing data file names and labels. Format per line: image_path characters.
    • model-dir: The directory for saving and loading model parameters (structure is not stored).
    • log-path: The path to put log.
    • output-dir: The path to put visualization results if visualize is set to True.
    • steps-per-checkpoint: Checkpointing (print perplexity, save model) per how many steps
  • Optimization

    • num-epoch: The number of whole data passes.
    • batch-size: Batch size. Only valid if phase is set to train.
    • initial-learning-rate: Initial learning rate, note the we use AdaDelta, so the initial value doe not matter much.
  • Network

    • target-embedding-size: Embedding dimension for each target.
    • attn-use-lstm: Whether or not use LSTM attention decoder cell.
    • attn-num-hidden: Number of hidden units in attention decoder cell.
    • attn-num-layers: Number of layers in attention decoder cell. (Encoder number of hidden units will be attn-num-hidden*attn-num-layers).
    • target-vocab-size: Target vocabulary size. Default is = 26+10+3 # 0: PADDING, 1: GO, 2: EOS, >2: 0-9, a-z

References

Convert a formula to its LaTex source

What You Get Is What You See: A Visual Markup Decompiler

Torch attention OCR

Owner
Yuntian Deng
Yuntian Deng
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022
Official implementation of Character Region Awareness for Text Detection (CRAFT)

CRAFT: Character-Region Awareness For Text detection Official Pytorch implementation of CRAFT text detector | Paper | Pretrained Model | Supplementary

Clova AI Research 2.5k Jan 03, 2023
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022