RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

Overview

RuCLIPtiny

Zero-shot image classification model for Russian language


RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts). Our model is based on ConvNeXt-tiny and DistilRuBert-tiny, and is supported by extensive research zero-shot transfer, computer vision, natural language processing, and multimodal learning.

Result evaluation

Our model achieved 46.62% top1 and 73.18% top5 zero-shot accuracy on CIFAR100

Examples

Open In Colab Evaluate & Simple usage

Open In Colab Finetuning

Open In Colab ONNX conversion and speed testing

Model weights

Usage

Install rucliptiny module and requirements first. Use this trick

!gdown -O ru-clip-tiny.pkl https://drive.google.com/uc?id=1-3g3J90pZmHo9jbBzsEmr7ei5zm3VXOL
!pip install git+https://github.com/cene555/ru-clip-tiny.git

Example in 3 steps

Download CLIP image from repo

!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Import libraries
from rucliptiny.predictor import Predictor
from rucliptiny import RuCLIPtiny
import torch

torch.manual_seed(1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  1. Load model
model = RuCLIPtiny()
model.load_state_dict(torch.load('ru-clip-tiny.pkl'))
model = model.to(device).eval()
  1. Use predictor to get probabilities
predictor = Predictor()

classes = ['диаграмма', 'собака', 'кошка']
text_probs = predictor(model=model, images_path=["CLIP.png"],
                       classes=classes, get_probs=True,
                       max_len=77, device=device)

Cosine similarity Visualization Example

image

Speed Testing

NVIDIA Tesla K80 (Google Colab session)

TORCH batch encode_image encode_text total
RuCLIPtiny 2 0.011 0.004 0.015
RuCLIPtiny 8 0.011 0.004 0.015
RuCLIPtiny 16 0.012 0.005 0.017
RuCLIPtiny 32 0.014 0.005 0.019
RuCLIPtiny 64 0.013 0.006 0.019

We would like to express my gratitude to Sber AI for the grants provided, for which research was carried out, as part of the Artificial Intelligence International Junior Contest (AIIJC)

Owner
Shahmatov Arseniy
https://t.me/Cene655
Shahmatov Arseniy
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022