RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

Overview

RuCLIPtiny

Zero-shot image classification model for Russian language


RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts). Our model is based on ConvNeXt-tiny and DistilRuBert-tiny, and is supported by extensive research zero-shot transfer, computer vision, natural language processing, and multimodal learning.

Result evaluation

Our model achieved 46.62% top1 and 73.18% top5 zero-shot accuracy on CIFAR100

Examples

Open In Colab Evaluate & Simple usage

Open In Colab Finetuning

Open In Colab ONNX conversion and speed testing

Model weights

Usage

Install rucliptiny module and requirements first. Use this trick

!gdown -O ru-clip-tiny.pkl https://drive.google.com/uc?id=1-3g3J90pZmHo9jbBzsEmr7ei5zm3VXOL
!pip install git+https://github.com/cene555/ru-clip-tiny.git

Example in 3 steps

Download CLIP image from repo

!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Import libraries
from rucliptiny.predictor import Predictor
from rucliptiny import RuCLIPtiny
import torch

torch.manual_seed(1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  1. Load model
model = RuCLIPtiny()
model.load_state_dict(torch.load('ru-clip-tiny.pkl'))
model = model.to(device).eval()
  1. Use predictor to get probabilities
predictor = Predictor()

classes = ['диаграмма', 'собака', 'кошка']
text_probs = predictor(model=model, images_path=["CLIP.png"],
                       classes=classes, get_probs=True,
                       max_len=77, device=device)

Cosine similarity Visualization Example

image

Speed Testing

NVIDIA Tesla K80 (Google Colab session)

TORCH batch encode_image encode_text total
RuCLIPtiny 2 0.011 0.004 0.015
RuCLIPtiny 8 0.011 0.004 0.015
RuCLIPtiny 16 0.012 0.005 0.017
RuCLIPtiny 32 0.014 0.005 0.019
RuCLIPtiny 64 0.013 0.006 0.019

We would like to express my gratitude to Sber AI for the grants provided, for which research was carried out, as part of the Artificial Intelligence International Junior Contest (AIIJC)

Owner
Shahmatov Arseniy
https://t.me/Cene655
Shahmatov Arseniy
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022