Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Overview

Realistic Few-Shot Relation Extraction

This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extraction" to appear in The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). This code is not intended to be modified or reused. It is a fork of an existing FewRel repository with some modifications.

Fine-tuning

The following command is to fine-tune a pre-trained model on a training dataset complying with the FewRel's format (see the Dataset section below).

python -m fewrel.fewrel_eval \
  --train train_wiki \
  --test val_wiki \
  --encoder {"cnn", "bert", "roberta", "luke"} \
  --pool {"cls", "cat_entity_reps"} \
  --data_root data/fewrel \
  --pretrain_ckpt {pretrained_model_path} \
  --train_iter 10000 \
  --val_iter 1000 \
  --val_step 2000 \
  --test_iter 2000

The above command will dump the fine-tuned model under ./checkpoint. The following command can be used to get the overall accuracy for the fine-tuned model.

Overall accuracy

python -m fewrel.fewrel_eval \
  --only_test \
  --test val_wiki \
  --encoder {"cnn", "bert", "roberta", "luke"} \
  --pool {"cls", "cat_entity_reps"} \
  --data_root data/fewrel \
  --pretrain_ckpt {pretrained_model_path} \ # needed for getting model config
  --load_ckpt {trained_checkpoint_path} \
  --test_iter 2000

[email protected] for individual relations

Precision at 50 can be calculated using the following command

python -m fewrel.alt_eval \
  --test {test_file_name_without_extension} \ # e.g., tacred_org 
  --encoder {"cnn", "bert", "roberta", "luke"} \
  --pool {"cls", "cat_entity_reps"} \
  --data_root {path_to_data_folder} \
  --pretrain_ckpt {pretrained_model_path} \ # needed for getting model config
  --load_ckpt {trained_checkpoint_path}

Pre-trained models

In this work, several encoders are experimented with including CNN, BERT, SpanBERT, RoBERTa-base, RoBERTa-large, and LUKE-base. Most pre-trained models can be downloaded from Hugging Face Transformers, and LUKE-base can be downloaded from its original GitHub repository.

Note: the original LUKE code depends on an older version of HuggingFace Transformers, which is not compatible with the version used in this repository. To experiment with LUKE, please run script ./checkout_out_luke.sh. This will first clone the original LUKE repository, apply the necessary changes to make luke compatible with this repo, and move the LUKE module to the correct place to make sure the code runs correctly.

Dataset

The original FewRel dataset has already be contained in the github repo (here)[./data/fewrel]. To convert other dataset (e.g., TACRED) to the FewRel format, one could use ./scripts/prep_more_data.py.

./scripts/select_rel.py is a script to augment an existing dataset with relations from another dataset. For example, to add a list of relations from dataset source.json to destination.json and dump the merged dataset to a file output.json, one can use the following command:

python scripts/select_rel.py add_rel \
  --src source.json \
  --dst destination.json \
  --output output.json \
  --rels {relations_delimitated_by_space}
Owner
Bloomberg
Bloomberg
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022