An assignment on creating a minimalist neural network toolkit for CS11-747

Overview

minnn

by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik

This is an exercise in developing a minimalist neural network toolkit for NLP, part of Carnegie Mellon University's CS11-747: Neural Networks for NLP.

The most important files it contains are the following:

  1. minnn.py: This is what you'll need to implement. It implements a very minimalist version of a dynamic neural network toolkit (like PyTorch or Dynet). Some code is provided, but important functionality is not included.
  2. classifier.py: training code for a Deep Averaging Network for text classification using minnn. You can feel free to make any modifications to make it a better model, but the original version of classifier.py must also run with your minnn.py implementation.
  3. setup.py: this is blank, but if your classifier implementation needs to do some sort of data downloading (e.g. of pre-trained word embeddings) you can implement this here. It will be run before running your implementation of classifier.py.
  4. data/: Two datasets, one from the Stanford Sentiment Treebank with tree info removed and another from IMDb reviews.

Assignment Details

Important Notes:

  • There is a detailed description of the code structure in structure.md, including a description of which parts you will need to implement.
  • The only allowed external library is numpy or cupy, no other external libraries are allowed.
  • We will run your code with the following commands, so make sure that whatever your best results are are reproducible using these commands (where you replace ANDREWID with your andrew ID):
    • mkdir -p ANDREWID
    • python classifier.py --train=data/sst-train.txt --dev=data/sst-dev.txt --test=data/sst-test.txt --dev_out=ANDREWID/sst-dev-output.txt --test_out=ANDREWID/sst-test-output.txt
    • python classifier.py --train=data/cfimdb-train.txt --dev=data/cfimdb-dev.txt --test=data/cfimdb-test.txt --dev_out=ANDREWID/cfimdb-dev-output.txt --test_out=ANDREWID/cfimdb-test-output.txt
  • Reference accuracies: with our implementation and the default hyper-parameters, the mean(std) of accuracies with 10 different random seeds on sst is dev=0.4045(0.0070), test=0.4069(0.0105), and on cfimdb dev=0.8792(0.0084). If you implement things exactly in our way and use the default random seed and use the same environment (python 3.8 + numpy 1.18 or 1.19), you may get the accuracies of dev=0.4114, test=0.4253, and on cfimdb dev=0.8857.

The submission file should be a zip file with the following structure (assuming the andrew id is ANDREWID):

  • ANDREWID/
  • ANDREWID/minnn.py # completed minnn.py
  • ANDREWID/classifier.py.py # completed classifier.py with any of your modifications
  • ANDREWID/sst-dev-output.txt # output of the dev set for SST data
  • ANDREWID/sst-test-output.txt # output of the test set for SST data
  • ANDREWID/cfimdb-dev-output.txt # output of the dev set for CFIMDB data
  • ANDREWID/cfimdb-test-output.txt # output of the test set for CFIMDB data
  • ANDREWID/report.pdf # (optional), report. here you can describe anything particularly new or interesting that you did

Grading information:

  • A+: Submissions that implement something new and achieve particularly large accuracy improvements (e.g. 2% over the baseline on SST)
  • A: You additionally implement something else on top of the missing pieces, some examples include:
    • Implementing another optimizer such as Adam
    • Incorporating pre-trained word embeddings, such as those from fasttext
    • Changing the model architecture significantly
  • A-: You implement all the missing pieces and the original classifier.py code achieves comparable accuracy to our reference implementation (about 41% on SST)
  • B+: All missing pieces are implemented, but accuracy is not comparable to the reference.
  • B or below: Some parts of the missing pieces are not implemented.

References

Stanford Sentiment Treebank: https://www.aclweb.org/anthology/D13-1170.pdf

IMDb Reviews: https://openreview.net/pdf?id=Sklgs0NFvr

Owner
Graham Neubig
Graham Neubig
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023