CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

Overview

LED2-Net

This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering".

You can visit our project website and upload your own panorama to see the 3D results!

[Project Website] [Paper (arXiv)]

Prerequisite

This repo is primarily based on PyTorch. You can use the follwoing command to intall the dependencies.

pip install -r requirements.txt

Preparing Training Data

Under LED2Net/Dataset, we provide the dataloader of Matterport3D and Realtor360. The annotation formats of the two datasets follows PanoAnnotator. The detailed description of the format is explained in LayoutMP3D.

Under config/, config_mp3d.yaml and config_realtor360.yaml are the configuration file for Matterport3D and Realtor360.

Matterport3D

To train/val on Matterport3D, please modify the two items in config_mp3d.yaml.

dataset_image_path: &dataset_image_path '/path/to/image/location'
dataset_label_path: &dataset_label_path '/path/to/label/location'

The dataset_image_path and dataset_label_path follow the folder structure:

  dataset_image_path/
  |-------17DRP5sb8fy/
          |-------00ebbf3782c64d74aaf7dd39cd561175/
                  |-------color.jpg
          |-------352a92fb1f6d4b71b3aafcc74e196234/
                  |-------color.jpg
          .
          .
  |-------gTV8FGcVJC9/
          .
          .
  dataset_label_path/
  |-------mp3d_train.txt
  |-------mp3d_val.txt
  |-------mp3d_test.txt
  |-------label/
          |-------Z6MFQCViBuw_543e6efcc1e24215b18c4060255a9719_label.json
          |-------yqstnuAEVhm_f2eeae1a36f14f6cb7b934efd9becb4d_label.json
          .
          .
          .

Then run main.py and specify the config file path

python main.py --config config/config_mp3d.yaml --mode train # For training
python main.py --config config/config_mp3d.yaml --mode val # For testing

Realtor360

To train/val on Realtor360, please modify the item in config_realtor360.yaml.

dataset_path: &dataset_path '/path/to/dataset/location'

The dataset_path follows the folder structure:

  dataset_path/
  |-------train.txt
  |-------val.txt
  |-------sun360/
          |-------pano_ajxqvkaaokwnzs/
                  |-------color.png
                  |-------label.json
          .
          .
  |-------istg/
          |-------1/
                  |-------1/
                          |-------color.png
                          |-------label.json
                  |-------2/
                          |-------color.png
                          |-------label.json
                  .
                  .
          .
          .
          
  

Then run main.py and specify the config file path

python main.py --config config/config_realtor360.yaml --mode train # For training
python main.py --config config/config_realtor360.yaml --mode val # For testing

Run Inference

After finishing the training, you can use the following command to run inference on your own data (xxx.jpg or xxx.png).

python run_inference.py --config YOUR_CONFIG --src SRC_FOLDER/ --dst DST_FOLDER --ckpt XXXXX.pkl

This script will predict the layouts of all images (jpg or png) under SRC_FOLDER/ and store the results as json files under DST_FOLDER/.

Pretrained Weights

We provide the pretrained model of Realtor360 in this link.

Currently, we use DuLa-Net's post processing for inference. We will release the version using HorizonNet's post processing later.

Layout Visualization

To visualize the 3D layout, we provide the visualization tool in 360LayoutVisualizer. Please clone it and install the corresponding packages. Then, run the following command

cd 360LayoutVisualizer/
python visualizer.py --img xxxxxx.jpg --json xxxxxx.json

Citation

@misc{wang2021led2net,
      title={LED2-Net: Monocular 360 Layout Estimation via Differentiable Depth Rendering}, 
      author={Fu-En Wang and Yu-Hsuan Yeh and Min Sun and Wei-Chen Chiu and Yi-Hsuan Tsai},
      year={2021},
      eprint={2104.00568},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Fu-En Wang
Hi, I am a member of VSLAB in National Tsing Hua University. You can check my personal website for more research projects (https://fuenwang.ml/).
Fu-En Wang
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"

Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati

Pengyuan Lyu 261 Nov 21, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

Ed Medvedev 933 Dec 29, 2022
Document Layout Analysis Projects

Layout_Analysis Introduction This is an implementation of RLSA and X-Y Cut with OpenCV Dependencies OpenCV 3.0+ How to use Compile with g++ : g++ -std

22 Dec 08, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.

Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0

121 Oct 15, 2021
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 144 Jan 05, 2023
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
Deep Learning Chinese Word Segment

引用 本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098 构建 安装好bazel代码构建工具,安装好tensorflow(目前本项目需

2.1k Dec 23, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
A python program to block out your face

Readme This is a small program I threw together in about 6 hours to block out your face. It probably doesn't work very well, so be warned. By default,

1 Oct 17, 2021
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
Image processing is one of the most common term in computer vision

Image processing is one of the most common term in computer vision. Computer vision is the process by which computers can understand images and videos, and how they are stored, manipulated, and retri

Happy N. Monday 3 Feb 15, 2022