Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Overview

Multi-Type-TD-TSR

Check it out on Open In Colab Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition

Description

Multi-Type-TD-TSR the Whole Pipeline

As global trends are shifting towards data-driven industries, the demand for automated algorithms that can convert digital images of scanned documents into machine readable information is rapidly growing. Besides the opportunity of data digitization for the application of data analytic tools, there is also a massive improvement towards automation of processes, which previously would require manual inspection of the documents. Although the introduction of optical character recognition (OCR) technologies mostly solved the task of converting human-readable characters from images into machine-readable characters, the task of extracting table semantics has been less focused on over the years. The recognition of tables consists of two main tasks, namely table detection and table structure recognition. Most prior work on this problem focuseson either task without offering an end-to-end solution or paying attention to real application conditions like rotated images or noise artefacts inside the document image. Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition due to the lack of sufficiently large datasets. In this paper we present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition. It utilizes state-of-the-art deep learning models for table detection and differentiates between 3 different types of tables based on the tables’ borders. For the table structure recognition we use a deterministic non-data driven algorithm, which works on all table types. We additionally present two algorithms. One for unbordered tables and one for bordered tables, which are the base of the used table structure recognition algorithm. We evaluate Multi-Type-TD-TSR on the ICDAR 2019 table structure recognition dataset and achieve a new state-of-the-art.

Multi-Type-TD-TSR on Fully Bordered Tables

For TSR on fully bordered tables, we use the erosion and dilation operation to extract the row-column grid cell image without any text or characters. The erosion kernels are generally thin vertical and horizontal strips that are longer than the overall font size but shorter than the size of the smallest grid cell and, in particular, must not be wider than the smallest table border width. Using these kernel size constraints results in the erosion operation removing all fonts and characters from the table while preserving the table borders. In order to restore the original line shape, the algorithm applies the dilation operation using the same kernel size on each of the two eroded images, producing an image with vertical and a second with horizontal lines. Finally, the algorithm combines both images by using a bit-wise ```or``` operation and re-inverting the pixel values to obtain a raster cell image. We then use the contours function on the grid-cell image to extract the bounding-boxes for every single grid cell.

Multi-Type-TD-TSR on Unbordered Tables

The TSR algorithm for unbordered tables works similarly to the one for bordered tables but utilizes the erosion operation in a different way. The erosion kernel is in general a thin strip with the difference that the horizontal size of the horizontal kernel includes the full image width and the vertical size of the vertical kernel the full image height. The algorithm slides both kernels independently over the whole image from left to right for the vertical kernel, and from top to bottom for the horizontal kernel. During this process it is looking for empty rows and columns that do not contain any characters or font. The resulting images are inverted and combined by a bit-wise ```and``` operation producing the final output. The output is a grid-cell image similar to the one from TSR for bordered tables, where the overlapping areas of the two resulting images represent the bounding-boxes for every single grid cell.

Multi-Type-TD-TSR on Partially Bordered Tables

The main goal of our algorithms for bordered and unbordered tables is to create a grid cell image by adding borders in the unbordered case and detecting lines in the bordered case. If a table is only partially bordered, then the unbordered algorithm is prevented to add borders in orthogonal direction to the existing borders, while the bordered algorithm can only find the existing borders. Both approaches result in incomplete grid cell images.


TSR for partially bordered tables uses the same erosion algorithm as in bordered tables to detect existing borderes, but without using them to create a grid cell, but to delete the borders from the table image to get an unbordered table. This allows for applying the algorithm for unbordered tables to create the grid-cell image and contours by analogy to the variants discussed above. A key feature of this approach is that it works with both bordered and unbordered tables: it is type-independent.

 

 

 

 

 

Table Structure Recognition Results

ICDAR 19 (Track B2)

IoU IoU IoU IoU Weighted
Team 0.6 0.7 0.8 0.9 Average
CascadeTabNet 0.438 0.354 0.19 0.036 0.232
NLPR-PAL 0.365 0.305 0.195 0.035 0.206
Multi-Type-TD-TSR 0.589 0.404 0.137 0.015 0.253

Instructions

Configurations

The source code is developed under the following library dependencies

  • PyTorch = 1.7.0
  • Torchvision = 0.8.1
  • Cuda = 10.1
  • PyYAML = 5.1

Detectron 2

The table detection model is based on detectron2 follow this installation guide to setup.

Image Alignment Pre-Processing

For the image alignment pre-processing step there is one script available:

  • deskew.py

To apply the image alignment pre-processing algorithm to all images in one folder, you need to execute:

python3 deskew.py

with the following parameters

  • --folder the input folder including document images
  • --output the output folder for the deskewed images

Table Structure Recognition (TSR)

For the table structure recognition we offer a simple script for different approaches

  • tsr.py

To apply a table structure recognition algorithm to all images in one folder, you need to execute:

python3 tsr.py

with the following parameters

  • --folder path of the input folder including table images
  • --type the table structure recognition type type in ["borderd", "unbordered", "partially", "partially_color_inv"]
  • --img_output output folder path for the processed images
  • --xml_output output folder path for the xml files including bounding boxes

Table Detection and Table Structure Recognition (TD & TSR)

To appy the table detection with a followed table structure recogniton

  • tdtsr.py

To apply a table structure recognitio algorithm to all images in one folder, you need to execute:

python3 tdtsr.py

with the following parameters

  • --folder path of the input folder including table images
  • --type the table structure recognition type type in ["borderd", "unbordered", "partially", "partially_color_inv"]
  • --tsr_img_output output folder path for the processed table images
  • --td_img_output output folder path for the produced table cutouts
  • --xml_output output folder path for the xml files for tables and cells including bounding boxes
  • --config path of detectron2 configuration file for table detection
  • --yaml path of detectron2 yaml file for table detection
  • --weights path of detectron2 model weights for table detection

Evaluation

To evaluate the table structure recognition algorithm we provide the following script:

  • evaluate.py

to apply the evaluation the table images and their labels in xml-format have to be the same name and should lie in a single folder. The evaluation could be started by:

python3 evaluate.py

with the following parameter

  • --dataset dataset folder path containing table images and labels in .xml format

Get Data

  • test dataset for table structure recognition including table images and annotations can be downloaded here
  • table detection detectron2 model weights and configuration files can be downloaded here

Citation

@misc{fischer2021multitypetdtsr,
    title={Multi-Type-TD-TSR - Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition: from OCR to Structured Table Representations},
    author={Pascal Fischer and Alen Smajic and Alexander Mehler and Giuseppe Abrami},
    year={2021},
    eprint={2105.11021},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Pascal Fischer
love machine learning, algorithms, probabilistic approaches, computer vision, natural language processing, robotics, 3D graphics and simulations.
Pascal Fischer
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
Maze generator and solver with python

Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P

Joseph 19 Dec 07, 2022
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
A python program to block out your face

Readme This is a small program I threw together in about 6 hours to block out your face. It probably doesn't work very well, so be warned. By default,

1 Oct 17, 2021
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture

Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni

Edgard Chammas 346 Jan 07, 2023
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Jan 05, 2023
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
Steve Tu 71 Dec 30, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Histogram specification using openCV in python .

histogram specification using openCV in python . Have to input miu and sigma to draw gausssian distribution which will be used to map the input image . Example input can be miu = 128 sigma = 30

Tamzid hasan 6 Nov 17, 2021
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
Um RPG de texto orientado a objetos.

RPG de texto Um RPG de texto orientado a objetos, sem história. Um RPG (Role-playing game) baseado em texto em que você pode viajar para alguns locais

Vinicius 3 Oct 05, 2022