Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

Overview

BBB Face Recognizer

Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

Cam frame visualization

Instalation

Install dependencies using requirements.txt

pip install -r requirements.txt

Usage

To use the project successfully, you need to follow the steps below.

1. Dataset

It is needed to build a dataset through the dataset_generator.py script.

This script builds a dataset with train and validation directories according by user labeling, using real time cam frames from reality show.

On execute will be created a directory on src folder with the following structure:

dataset
└── train
    └── label1
    └── label2
    └── label3
    └── ...
└── val
    └── label1
    └── label2
    └── label3
    └── ...

And you will be able to populate the train dataset.

If you want populate validation dataset use "-val" as first command line argument.

As the screenshot below, insert the label number that matches with shown face and repeat this process until you have enough data.

Dataset Labeling

For each label input, the .jpg image will be auto stored on respective dataset.

If you don't recognize the shown face, just leave blank input to skip.

2. Model

Now is needed to generate a model through the model_generator.py script.

Upon successful execution, the accuracy and confusion matrix of train and validation will be presented, and a directory will be created in the src folder with the following structure:

model_files
└── label_encoder.joblib
└── metrics.txt
└── model.joblib

This joblib files will be loaded by face_predictor.py to use generated model.

3. API

Lastly the API can be started.

For development purpose run the live server with commands below.

cd src
uvicorn api:app --reload

Upon successful run, access in your browser http://127.0.0.1:8000/cams to get a json response with list of cams with recognized faces, like presented below.

[
  {
    "name": "BBB 22 - Câmera 1",
    "location": "Acompanhe a Casa",
    "snapshot_link": "https://live-thumbs.video.globo.com/bbb01/snapshot/",
    "slug": "bbb-22-camera-1",
    "media_id": "244881",
    "stream_link": "https://globoplay.globo.com/bbb-22-camera-1/ao-vivo/244881/?category=bbb",
    "recognized_faces": [
      {
        "label": "arthur",
        "probability": 64.19885945991763,
        "coordinates": {
          "topLeft": [
            118,
            45
          ],
          "bottomRight": [
            240,
            199
          ]
        }
      },
      {
        "label": "eliezer",
        "probability": 39.81395352766756,
        "coordinates": {
          "topLeft": [
            380,
            53
          ],
          "bottomRight": [
            460,
            152
          ]
        }
      },
      {
        "label": "scooby",
        "probability": 37.971779438946054,
        "coordinates": {
          "topLeft": [
            195,
            83
          ],
          "bottomRight": [
            404,
            358
          ]
        }
      }
    ],
    "scrape_timestamp": "2022-03-01T22:24:41.989674",
    "frame_timestamp": "2022-03-01T22:24:42.307244"
  },
  ...
]

To see all provided routes access the documentation auto generated by FAST API with Swagger UI.

For more details access FAST API documentation.

If you want to visualize the frame and face recognition on real time, set VISUALIZATION_ENABLED to True in the api.py file (use only for development), for each cam frame will be apresented like the first screenshot.

TO DO

  • cam_scraper.py: upgrade scrape_cam_frame() to get a high definition cam frame.
  • api.py: return cam list by label based on probability
  • api.py: use a database to store historical data
  • face_predictor.py: predict emotions
Owner
Rafael Azevedo
Computer Engineering student at State University of Feira de Santana. Software developer at Globo.
Rafael Azevedo
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021