Tensorflow implementation of Character-Aware Neural Language Models.

Overview

Character-Aware Neural Language Models

Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found here.

model.png

This implementation contains:

  1. Word-level and Character-level Convolutional Neural Network
  2. Highway Network
  3. Recurrent Neural Network Language Model

The current implementation has a performance issue. See #3.

Prerequisites

Usage

To train a model with ptb dataset:

$ python main.py --dataset ptb

To test an existing model:

$ python main.py --dataset ptb --forward_only True

To see all training options, run:

$ python main.py --help

which will print

usage: main.py [-h] [--epoch EPOCH] [--word_embed_dim WORD_EMBED_DIM]
              [--char_embed_dim CHAR_EMBED_DIM]
              [--max_word_length MAX_WORD_LENGTH] [--batch_size BATCH_SIZE]
              [--seq_length SEQ_LENGTH] [--learning_rate LEARNING_RATE]
              [--decay DECAY] [--dropout_prob DROPOUT_PROB]
              [--feature_maps FEATURE_MAPS] [--kernels KERNELS]
              [--model MODEL] [--data_dir DATA_DIR] [--dataset DATASET]
              [--checkpoint_dir CHECKPOINT_DIR]
              [--forward_only [FORWARD_ONLY]] [--noforward_only]
              [--use_char [USE_CHAR]] [--nouse_char] [--use_word [USE_WORD]]
              [--nouse_word]

optional arguments:
  -h, --help            show this help message and exit
  --epoch EPOCH         Epoch to train [25]
  --word_embed_dim WORD_EMBED_DIM
                        The dimension of word embedding matrix [650]
  --char_embed_dim CHAR_EMBED_DIM
                        The dimension of char embedding matrix [15]
  --max_word_length MAX_WORD_LENGTH
                        The maximum length of word [65]
  --batch_size BATCH_SIZE
                        The size of batch images [100]
  --seq_length SEQ_LENGTH
                        The # of timesteps to unroll for [35]
  --learning_rate LEARNING_RATE
                        Learning rate [1.0]
  --decay DECAY         Decay of SGD [0.5]
  --dropout_prob DROPOUT_PROB
                        Probability of dropout layer [0.5]
  --feature_maps FEATURE_MAPS
                        The # of feature maps in CNN
                        [50,100,150,200,200,200,200]
  --kernels KERNELS     The width of CNN kernels [1,2,3,4,5,6,7]
  --model MODEL         The type of model to train and test [LSTM, LSTMTDNN]
  --data_dir DATA_DIR   The name of data directory [data]
  --dataset DATASET     The name of dataset [ptb]
  --checkpoint_dir CHECKPOINT_DIR
                        Directory name to save the checkpoints [checkpoint]
  --forward_only [FORWARD_ONLY]
                        True for forward only, False for training [False]
  --noforward_only
  --use_char [USE_CHAR]
                        Use character-level language model [True]
  --nouse_char
  --use_word [USE_WORD]
                        Use word-level language [False]
  --nouse_word

but more options can be found in models/LSTMTDNN and models/TDNN.

Performance

Failed to reproduce the results of paper (2016.02.12). If you are looking for a code that reproduced the paper's result, see https://github.com/mkroutikov/tf-lstm-char-cnn.

loss

The perplexity on the test sets of Penn Treebank (PTB) corpora.

Name Character embed LSTM hidden units Paper (Y Kim 2016) This repo.
LSTM-Char-Small 15 100 92.3 in progress
LSTM-Char-Large 15 150 78.9 in progress

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022