songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Overview

Sparkify

Songplays User activity datamart

Status GitHub Issues GitHub Pull Requests License


The following document describes the model used to build the songplays datamart table and the respective ETL process.

Table of Contents

About

The songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system.

This document describes the model of songplays table datamart on sparkify_app schema inside a container sparkify_postgres, and the Python code to load new data. The production directory and data must be simmilar to those in mnt/data/log_data and mnt/data/song_data paths in this repository.

🏁 Getting Started

First you need to have the right permissions to access the source files and write them into sparkify_app tables that generates the songplays datamart table. Contact the owners or your team leader for more information.

Data Model and Schema


songplays datamart

Source files and owners

File or table Description Directory Owner
YYYY-MM-DD-events.json User events. mnt/data/log_data/YYYY/11 Person 1
.json Song data. mnt/data/song_data/a Person 2
songplays Datamart for recomendation system. sparkify_app.songplays Person 3
artists Dimension table for artists. sparkify_app.artists Person 1
songs Dimension table for songs. sparkify_app.songs Person 1
time Dimension table for streaming start time for a given song. sparkify_app.time Person 2
users Dimension table for users. sparkify_app.users Person 3

Prerequisites


To run this project first you need to install the Docker Engine for your operational system and Docker Compose.

After installing and configuring the Docker tools, download this repository and create a folder named postgres that will store all sparkify_postgres service data. To build the proper images and run the services, just execute the following command inside this repository:

docker-compose up

If the service runs successfully you should see something like this:

...
sparkify_python      | 28/30 files processed.
sparkify_python      | 29/30 files processed.
sparkify_python      | 30/30 files processed.
sparkify_python exited with code 0

You can also check the job by following these steps:

  • Open your browser and access localhost:16543: pga1

    • Enter with the following credentials to authenticate:
  • After you log in, click on the Servers option at the upper corner on the left: pga2

    • You will be asked to enter with the PostgreSQL credentials:
      • User: sparkifypsql
      • Password: p4ssw0rd
  • Select the Query Tools under the Tools menu: pga3

  • Under the Query Editor, run the following query:

    SELECT * FROM sparkify_app.songplays WHERE song_id is NOT NULL and artist_id is NOT NULL;
    • You should get only 5 rows. pga3

Microservice architecture

The following image represents the microservice architecture for this project: topology

Where:

  • sparkify_python: runs all Python scripts and stores raw data.
  • sparkify_postgres: runs Postgre and stores the database.
  • sparkify_pgadmin: runs the pgAdmin tool to monitor the sparkify_postgres service.

⛏️ Built Using

✍️ Authors

Owner
Leandro Kellermann de Oliveira
Leandro Kellermann de Oliveira
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022