🏖 Easy training and deployment of seq2seq models.

Overview

Headliner

Build Status Build Status Docs codecov PyPI Version License

Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both researchers and developers. You can very easily deploy your models in a few lines of code. It was originally built for our own research to generate headlines from Welt news articles (see figure 1). That's why we chose the name, Headliner.

Figure 1: One example from our Welt.de headline generator.

Update 21.01.2020

The library now supports fine-tuning pre-trained BERT models with custom preprocessing as in Text Summarization with Pretrained Encoders!

check out this tutorial on colab!

🧠 Internals

We use sequence-to-sequence (seq2seq) under the hood, an encoder-decoder framework (see figure 2). We provide a very simple interface to train and deploy seq2seq models. Although this library was created internally to generate headlines, you can also use it for other tasks like machine translations, text summarization and many more.

Figure 2: Encoder-decoder sequence-to-sequence model.

Why Headliner?

You may ask why another seq2seq library? There are a couple of them out there already. For example, Facebook has fairseq, Google has seq2seq and there is also OpenNMT. Although those libraries are great, they have a few drawbacks for our use case e.g. the former doesn't focus much on production whereas the Google one is not actively maintained. OpenNMT was the closest one to match our requirements i.e. it has a strong focus on production. However, we didn't like that their workflow (preparing data, training and evaluation) is mainly done via the command line. They also expose a well-defined API though but the complexity there is still too high with too much custom code (see their minimal transformer training example).

Therefore, we built this library for us with the following goals in mind:

  • Easy-to-use API for training and deployment (only a few lines of code)
  • Uses TensorFlow 2.0 with all its new features (tf.function, tf.keras.layers etc.)
  • Modular classes: text preprocessing, modeling, evaluation
  • Extensible for different encoder-decoder models
  • Works on large text data

For more details on the library, read the documentation at: https://as-ideas.github.io/headliner/

Headliner is compatible with Python 3.6 and is distributed under the MIT license.

⚙️ Installation

⚠️ Before installing Headliner, you need to install TensorFlow as we use this as our deep learning framework. For more details on how to install it, have a look at the TensorFlow installation instructions.

Then you can install Headliner itself. There are two ways to install Headliner:

  • Install Headliner from PyPI (recommended):
pip install headliner
  • Install Headliner from the GitHub source:
git clone https://github.com/as-ideas/headliner.git
cd headliner
python setup.py install

📖 Usage

Training

For the training, you need to import one of our provided models or create your own custom one. Then you need to create the dataset, a tuple of input-output sequences, and then train it:

from headliner.trainer import Trainer
from headliner.model.transformer_summarizer import TransformerSummarizer

data = [('You are the stars, earth and sky for me!', 'I love you.'),
        ('You are great, but I have other plans.', 'I like you.')]

summarizer = TransformerSummarizer(embedding_size=64, max_prediction_len=20)
trainer = Trainer(batch_size=2, steps_per_epoch=100)
trainer.train(summarizer, data, num_epochs=2)
summarizer.save('/tmp/summarizer')

Prediction

The prediction can be done in a few lines of code:

from headliner.model.transformer_summarizer import TransformerSummarizer

summarizer = TransformerSummarizer.load('/tmp/summarizer')
summarizer.predict('You are the stars, earth and sky for me!')

Models

Currently available models include a basic encoder-decoder, an encoder-decoder with Luong attention, the transformer and a transformer on top of a pre-trained BERT-model:

from headliner.model.basic_summarizer import BasicSummarizer
from headliner.model.attention_summarizer import AttentionSummarizer
from headliner.model.transformer_summarizer import TransformerSummarizer
from headliner.model.bert_summarizer import BertSummarizer

basic_summarizer = BasicSummarizer()
attention_summarizer = AttentionSummarizer()
transformer_summarizer = TransformerSummarizer()
bert_summarizer = BertSummarizer()

Advanced training

Training using a validation split and model checkpointing:

from headliner.model.transformer_summarizer import TransformerSummarizer
from headliner.trainer import Trainer

train_data = [('You are the stars, earth and sky for me!', 'I love you.'),
              ('You are great, but I have other plans.', 'I like you.')]
val_data = [('You are great, but I have other plans.', 'I like you.')]

summarizer = TransformerSummarizer(num_heads=1,
                                   feed_forward_dim=512,
                                   num_layers=1,
                                   embedding_size=64,
                                   max_prediction_len=50)
trainer = Trainer(batch_size=8,
                  steps_per_epoch=50,
                  max_vocab_size_encoder=10000,
                  max_vocab_size_decoder=10000,
                  tensorboard_dir='/tmp/tensorboard',
                  model_save_path='/tmp/summarizer')

trainer.train(summarizer, train_data, val_data=val_data, num_epochs=3)

Advanced prediction

Prediction information such as attention weights and logits can be accessed via predict_vectors returning a dictionary:

from headliner.model.transformer_summarizer import TransformerSummarizer

summarizer = TransformerSummarizer.load('/tmp/summarizer')
summarizer.predict_vectors('You are the stars, earth and sky for me!')

Resume training

A previously trained summarizer can be loaded and then retrained. In this case the data preprocessing and vectorization is loaded from the model.

train_data = [('Some new training data.', 'New data.')] * 10

summarizer_loaded = TransformerSummarizer.load('/tmp/summarizer')
trainer = Trainer(batch_size=2)
trainer.train(summarizer_loaded, train_data)
summarizer_loaded.save('/tmp/summarizer_retrained')

Use pretrained GloVe embeddings

Embeddings in GloVe format can be injected in to the trainer as follows. Optionally, set the embedding to non-trainable.

trainer = Trainer(embedding_path_encoder='/tmp/embedding_encoder.txt',
                  embedding_path_decoder='/tmp/embedding_decoder.txt')

# make sure the embedding size matches to the embedding size of the files
summarizer = TransformerSummarizer(embedding_size=64,
                                   embedding_encoder_trainable=False,
                                   embedding_decoder_trainable=False)

Custom preprocessing

A model can be initialized with custom preprocessing and tokenization:

from headliner.preprocessing.preprocessor import Preprocessor

train_data = [('Some inputs.', 'Some outputs.')] * 10

preprocessor = Preprocessor(filter_pattern='',
                            lower_case=True,
                            hash_numbers=False)
train_prep = [preprocessor(t) for t in train_data]
inputs_prep = [t[0] for t in train_prep]
targets_prep = [t[1] for t in train_prep]

# Build tf subword tokenizers. Other custom tokenizers can be implemented
# by subclassing headliner.preprocessing.Tokenizer
from tensorflow_datasets.core.features.text import SubwordTextEncoder
tokenizer_input = SubwordTextEncoder.build_from_corpus(
inputs_prep, target_vocab_size=2**13, reserved_tokens=[preprocessor.start_token, preprocessor.end_token])
tokenizer_target = SubwordTextEncoder.build_from_corpus(
    targets_prep, target_vocab_size=2**13,  reserved_tokens=[preprocessor.start_token, preprocessor.end_token])

vectorizer = Vectorizer(tokenizer_input, tokenizer_target)
summarizer = TransformerSummarizer(embedding_size=64, max_prediction_len=50)
summarizer.init_model(preprocessor, vectorizer)

trainer = Trainer(batch_size=2)
trainer.train(summarizer, train_data, num_epochs=3)

Use pre-trained BERT embeddings

Pre-trained BERT models can be included as follows. Be aware that pre-trained BERT models are expensive to train and require custom preprocessing!

from headliner.preprocessing.bert_preprocessor import BertPreprocessor
from spacy.lang.en import English

train_data = [('Some inputs.', 'Some outputs.')] * 10

# use BERT-specific start and end token
preprocessor = BertPreprocessor(nlp=English()
train_prep = [preprocessor(t) for t in train_data]
targets_prep = [t[1] for t in train_prep]


from tensorflow_datasets.core.features.text import SubwordTextEncoder
from transformers import BertTokenizer
from headliner.model.bert_summarizer import BertSummarizer

# Use a pre-trained BERT embedding and BERT tokenizer for the encoder 
tokenizer_input = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer_target = SubwordTextEncoder.build_from_corpus(
    targets_prep, target_vocab_size=2**13,  reserved_tokens=[preprocessor.start_token, preprocessor.end_token])

vectorizer = BertVectorizer(tokenizer_input, tokenizer_target)
summarizer = BertSummarizer(num_heads=2,
                            feed_forward_dim=512,
                            num_layers_encoder=0,
                            num_layers_decoder=4,
                            bert_embedding_encoder='bert-base-uncased',
                            embedding_size_encoder=768,
                            embedding_size_decoder=768,
                            dropout_rate=0.1,
                            max_prediction_len=50))
summarizer.init_model(preprocessor, vectorizer)

trainer = Trainer(batch_size=2)
trainer.train(summarizer, train_data, num_epochs=3)

Training on large datasets

Large datasets can be handled by using an iterator:

def read_data_iteratively():
    return (('Some inputs.', 'Some outputs.') for _ in range(1000))

class DataIterator:
    def __iter__(self):
        return read_data_iteratively()

data_iter = DataIterator()

summarizer = TransformerSummarizer(embedding_size=10, max_prediction_len=20)
trainer = Trainer(batch_size=16, steps_per_epoch=1000)
trainer.train(summarizer, data_iter, num_epochs=3)

🤝 Contribute

We welcome all kinds of contributions such as new models, new examples and many more. See the Contribution guide for more details.

📝 Cite this work

Please cite Headliner in your publications if this is useful for your research. Here is an example BibTeX entry:

@misc{axelspringerai2019headliners,
  title={Headliner},
  author={Christian Schäfer & Dat Tran},
  year={2019},
  howpublished={\url{https://github.com/as-ideas/headliner}},
}

🏗 Maintainers

© Copyright

See LICENSE for details.

References

Text Summarization with Pretrained Encoders

Effective Approaches to Attention-based Neural Machine Translation

Acknowlegements

https://www.tensorflow.org/tutorials/text/transformer

https://github.com/huggingface/transformers

https://machinetalk.org/2019/03/29/neural-machine-translation-with-attention-mechanism/

Owner
Axel Springer Ideas Engineering GmbH
We are driving, shaping and coding the future of tech at Axel Springer.
Axel Springer Ideas Engineering GmbH
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022