Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

Related tags

Deep LearningCDFI
Overview

CDFI (Compression-Driven-Frame-Interpolation)

[Paper] (Coming soon...) | [arXiv]

Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

Introduction

We propose a Compression-Driven network design for Frame Interpolation (CDFI), that leverages model compression to significantly reduce the model size (allows a better understanding of the current architecture) while making room for further improvements and achieving superior performance in the end. Concretely, we first compress AdaCoF and show that a 10X compressed AdaCoF performs similarly as its original counterpart; then we improve upon this compressed model with simple modifications. Note that typically it is prohibitive to implement the same improvements on the original heavy model.

  • We achieve a significant performance gain with only a quarter in size compared with the original AdaCoF

    Vimeo-90K Middlebury UCF101-DVF #Params
    PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS
    AdaCoF 34.38, 0.974, 0.019 35.74, 0.979, 0.019 35.20, 0.967, 0.019 21.8M
    Compressed AdaCoF 34.15, 0.973, 0.020 35.46, 0.978, 0.019 35.14, 0.967, 0.019 2.45M
    AdaCoF+ 34.58, 0.975, 0.018 36.12, 0.981, 0.017 35.19, 0.967, 0.019 22.9M
    Compressed AdaCoF+ 34.46, 0.975, 0.019 35.76, 0.979, 0.019 35.16, 0.967, 0.019 2.56M
    Our Final Model 35.19, 0.978, 0.010 37.17, 0.983, 0.008 35.24, 0.967, 0.015 4.98M
  • Our final model also performs favorably against other state-of-the-arts (details refer to our paper)

  • The proposed framework is generic and can be easily transferred to other DNN-based frame interpolation method

The above GIF is a demo of using our method to generate slow motion video, which increases the FPS from 5 to 160. We also provide a long video demonstration here (redirect to YouTube).

Environment

  • CUDA 11.0

  • python 3.8.3

  • torch 1.6.0

  • torchvision 0.7.0

  • cupy 7.7.0

  • scipy 1.5.2

  • numpy 1.19.1

  • Pillow 7.2.0

  • scikit-image 0.17.2

Test Pre-trained Models

Download repository:

$ git clone https://github.com/tding1/CDFI.git
$ cd CDFI/

Testing data

For user convenience, we already provide the Middlebury and UCF101-DVF test datasets in our repository, which can be found under directory test_data/.

Evaluation metrics

We use the built-in functions in skimage.metrics to compute the PSNR and SSIM, for which the higher the better. We also use LPIPS, a newly proposed metric that measures perceptual similarity, for which the smaller the better. For user convenience, we include the implementation of LPIPS in our repo under lpips_pytorch/, which is a slightly modified version of here (with an updated squeezenet backbone).

Test our pre-trained CDFI model

$ python test.py --gpu_id 0

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/cdfi_adacof/.

Test the compressed AdaCoF

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 5 --dilation 1

By default, it will load the compressed AdaCoF model checkpoints/compressed_adacof_F_5_D_1.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_5_D_1/.

Test the compressed AdaCoF+

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 11 --dilation 2

By default, it will load the compressed AdaCoF+ model checkpoints/compressed_adacof_F_11_D_2.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_11_D_2/.

Interpolate two frames

$ python interpolate_twoframe.py --gpu_id 0 --first_frame figs/0.png --second_frame figs/1.png --output_frame output.png

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth, and generate the intermediate frame output.png given two consecutive frames in a sequence.

Train Our Model

Training data

We use the Vimeo-90K triplet dataset for video frame interpolation task, which is relatively large (>32 GB).

$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Start training

$ python train.py --gpu_id 0 --data_dir path/to/vimeo_triplet/ --batch_size 8

It will generate an unique ID for each training, and all the intermediate results/records will be saved under model_weights/<training id>/. For a GPU device with memory around 10GB, the --batch_size can take a value as large as 3, otherwise CUDA may be out of memory. There are many other training options, e.g., --lr, --epochs, --loss and so on, can be found in train.py.

Apply CDFI to New Models

One nice thing about CDFI is that the framework can be easily applied to other (heavy) DNN models and potentially boost their performance. The key to CDFI is the optimization-based compression that compresses a model via fine-grained pruning. In particular, we use the efficient and easy-to-use sparsity-inducing optimizer OBPROXSG (see also paper), and summarize the compression procedure for any other model in the following.

  • Copy the OBPROXSG optimizer, which is already implemented as torch.optim.optimizer, to your working directory
  • Starting from a pre-trained model, finetune its weights by using the OBPROXSG optimizer, like using any standard PyTorch built-in optimizer such as SGD or Adam
    • It is not necessarily to use the full dataset for this finetuning process
  • The parameters for the OBPROXSG optimizer
    • lr: learning rate
    • lambda_: coefficient of the L1 regularization term
    • epochSize: number of batches in a epoch
    • Np: number of proximal steps, which is set to be 2 for pruning AdaCoF
    • No: number of orthant steps (key step to promote sparsity), for which we recommend using the default setting
    • eps: threshold for trimming zeros, which is set to be 0.0001 for pruning AdaCoF
  • After the optimization is done (either by reaching a maximum number of epochs or achieving a high sparsity), use the layer density as the compression ratio for that layer, as described in the paper
  • As an example, compare the architectures in models/adacof.py and model/compressed_adacof.py for compressing AdaCoF with the above procedure

Now it's ready to make further improvements/modifications on the compressed model, based on the understanding of its flaws/drawbacks.

Citation

Coming soon...

Acknowledgements

The code is largely based on HyeongminLEE/AdaCoF-pytorch and baowenbo/DAIN.

Owner
Tianyu Ding
Ph.D. in Applied Mathematics \\ Master in Computer Science
Tianyu Ding
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022