Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

Related tags

Deep LearningCDFI
Overview

CDFI (Compression-Driven-Frame-Interpolation)

[Paper] (Coming soon...) | [arXiv]

Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021

Introduction

We propose a Compression-Driven network design for Frame Interpolation (CDFI), that leverages model compression to significantly reduce the model size (allows a better understanding of the current architecture) while making room for further improvements and achieving superior performance in the end. Concretely, we first compress AdaCoF and show that a 10X compressed AdaCoF performs similarly as its original counterpart; then we improve upon this compressed model with simple modifications. Note that typically it is prohibitive to implement the same improvements on the original heavy model.

  • We achieve a significant performance gain with only a quarter in size compared with the original AdaCoF

    Vimeo-90K Middlebury UCF101-DVF #Params
    PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS PSNR, SSIM, LPIPS
    AdaCoF 34.38, 0.974, 0.019 35.74, 0.979, 0.019 35.20, 0.967, 0.019 21.8M
    Compressed AdaCoF 34.15, 0.973, 0.020 35.46, 0.978, 0.019 35.14, 0.967, 0.019 2.45M
    AdaCoF+ 34.58, 0.975, 0.018 36.12, 0.981, 0.017 35.19, 0.967, 0.019 22.9M
    Compressed AdaCoF+ 34.46, 0.975, 0.019 35.76, 0.979, 0.019 35.16, 0.967, 0.019 2.56M
    Our Final Model 35.19, 0.978, 0.010 37.17, 0.983, 0.008 35.24, 0.967, 0.015 4.98M
  • Our final model also performs favorably against other state-of-the-arts (details refer to our paper)

  • The proposed framework is generic and can be easily transferred to other DNN-based frame interpolation method

The above GIF is a demo of using our method to generate slow motion video, which increases the FPS from 5 to 160. We also provide a long video demonstration here (redirect to YouTube).

Environment

  • CUDA 11.0

  • python 3.8.3

  • torch 1.6.0

  • torchvision 0.7.0

  • cupy 7.7.0

  • scipy 1.5.2

  • numpy 1.19.1

  • Pillow 7.2.0

  • scikit-image 0.17.2

Test Pre-trained Models

Download repository:

$ git clone https://github.com/tding1/CDFI.git
$ cd CDFI/

Testing data

For user convenience, we already provide the Middlebury and UCF101-DVF test datasets in our repository, which can be found under directory test_data/.

Evaluation metrics

We use the built-in functions in skimage.metrics to compute the PSNR and SSIM, for which the higher the better. We also use LPIPS, a newly proposed metric that measures perceptual similarity, for which the smaller the better. For user convenience, we include the implementation of LPIPS in our repo under lpips_pytorch/, which is a slightly modified version of here (with an updated squeezenet backbone).

Test our pre-trained CDFI model

$ python test.py --gpu_id 0

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/cdfi_adacof/.

Test the compressed AdaCoF

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 5 --dilation 1

By default, it will load the compressed AdaCoF model checkpoints/compressed_adacof_F_5_D_1.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_5_D_1/.

Test the compressed AdaCoF+

$ python test_compressed_adacof.py --gpu_id 0 --kernel_size 11 --dilation 2

By default, it will load the compressed AdaCoF+ model checkpoints/compressed_adacof_F_11_D_2.pth. It will print the quantitative results on both Middlebury and UCF101-DVF, and the interpolated images will be saved under test_output/compressed_adacof_F_11_D_2/.

Interpolate two frames

$ python interpolate_twoframe.py --gpu_id 0 --first_frame figs/0.png --second_frame figs/1.png --output_frame output.png

By default, it will load our pre-trained model checkpoints/CDFI_adacof.pth, and generate the intermediate frame output.png given two consecutive frames in a sequence.

Train Our Model

Training data

We use the Vimeo-90K triplet dataset for video frame interpolation task, which is relatively large (>32 GB).

$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Start training

$ python train.py --gpu_id 0 --data_dir path/to/vimeo_triplet/ --batch_size 8

It will generate an unique ID for each training, and all the intermediate results/records will be saved under model_weights/<training id>/. For a GPU device with memory around 10GB, the --batch_size can take a value as large as 3, otherwise CUDA may be out of memory. There are many other training options, e.g., --lr, --epochs, --loss and so on, can be found in train.py.

Apply CDFI to New Models

One nice thing about CDFI is that the framework can be easily applied to other (heavy) DNN models and potentially boost their performance. The key to CDFI is the optimization-based compression that compresses a model via fine-grained pruning. In particular, we use the efficient and easy-to-use sparsity-inducing optimizer OBPROXSG (see also paper), and summarize the compression procedure for any other model in the following.

  • Copy the OBPROXSG optimizer, which is already implemented as torch.optim.optimizer, to your working directory
  • Starting from a pre-trained model, finetune its weights by using the OBPROXSG optimizer, like using any standard PyTorch built-in optimizer such as SGD or Adam
    • It is not necessarily to use the full dataset for this finetuning process
  • The parameters for the OBPROXSG optimizer
    • lr: learning rate
    • lambda_: coefficient of the L1 regularization term
    • epochSize: number of batches in a epoch
    • Np: number of proximal steps, which is set to be 2 for pruning AdaCoF
    • No: number of orthant steps (key step to promote sparsity), for which we recommend using the default setting
    • eps: threshold for trimming zeros, which is set to be 0.0001 for pruning AdaCoF
  • After the optimization is done (either by reaching a maximum number of epochs or achieving a high sparsity), use the layer density as the compression ratio for that layer, as described in the paper
  • As an example, compare the architectures in models/adacof.py and model/compressed_adacof.py for compressing AdaCoF with the above procedure

Now it's ready to make further improvements/modifications on the compressed model, based on the understanding of its flaws/drawbacks.

Citation

Coming soon...

Acknowledgements

The code is largely based on HyeongminLEE/AdaCoF-pytorch and baowenbo/DAIN.

Owner
Tianyu Ding
Ph.D. in Applied Mathematics \\ Master in Computer Science
Tianyu Ding
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022