Official implementation of Meta-StyleSpeech and StyleSpeech

Overview

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang

This is an official code for our recent paper. We propose Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. We provide our implementation and pretrained models as open source in this repository.

Abstract : With rapid progress in neural text-to-speech (TTS) models, personalized speech generation is now in high demand for many applications. For practical applicability, a TTS model should generate high-quality speech with only a few audio samples from the given speaker, that are also short in length. However, existing methods either require to fine-tune the model or achieve low adaptation quality without fine-tuning. In this work, we propose StyleSpeech, a new TTS model which not only synthesizes high-quality speech but also effectively adapts to new speakers. Specifically, we propose Style-Adaptive Layer Normalization (SALN) which aligns gain and bias of the text input according to the style extracted from a reference speech audio. With SALN, our model effectively synthesizes speech in the style of the target speaker even from single speech audio. Furthermore, to enhance StyleSpeech's adaptation to speech from new speakers, we extend it to Meta-StyleSpeech by introducing two discriminators trained with style prototypes, and performing episodic training. The experimental results show that our models generate high-quality speech which accurately follows the speaker's voice with single short-duration (1-3 sec) speech audio, significantly outperforming baselines.

Demo audio samples are avaliable demo page.


Recent Updates

Few modifications on the Variance Adaptor wich were found to improve the quality of the model . 1) We replace the architecture of variance emdedding from one Conv1D layer to two Conv1D layers followed by a linear layer. 2) We add a layernorm and phoneme-wise positional encoding. Please refer to here.

Getting the pretrained models

Model Link to the model
Meta-StyleSpeech Link
StyleSpeech Link

Prerequisites

  • Clone this repository.
  • Install python requirements. Please refer requirements.txt

Inference

You have to download pretrained models and prepared an audio for reference speech sample.

python synthesize.py --text <raw text to synthesize> --ref_audio <path to referecne speech audio> --checkpoint_path <path to pretrained model>

The generated mel-spectrogram will be saved in results/ folder.

Preprocessing the dataset

Our models are trained on LibriTTS dataset. Download, extract and place it in the dataset/ folder.

To preprocess the dataset : First, run

python prepare_align.py 

to resample audios to 16kHz and for some other preperations.

Second, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences.

./montreal-forced-aligner/bin/mfa_align dataset/wav16/ lexicon/librispeech-lexicon.txt  english datset/TextGrid/ -j 10 -v

Third, preprocess the dataset to prepare mel-spectrogram, duration, pitch and energy for fast training.

python preprocess.py

Train!

Train the StyleSpeech from the scratch with

python train.py 

Train the Meta-StyleSpeech from pretrained StyleSpeech with

python train_meta.py --checkpoint_path <path to pretrained StyleSpeech model>

Acknowledgements

We refered to

Owner
min95
min95
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022