A benchmark for stateful fuzzing of network protocols

Related tags

Networkingaflnwe
Overview

american fuzzy lop

Build Status

Originally developed by Michal Zalewski [email protected].

See QuickStartGuide.txt if you don't have time to read this file.

1) Challenges of guided fuzzing

Fuzzing is one of the most powerful and proven strategies for identifying security issues in real-world software; it is responsible for the vast majority of remote code execution and privilege escalation bugs found to date in security-critical software.

Unfortunately, fuzzing is also relatively shallow; blind, random mutations make it very unlikely to reach certain code paths in the tested code, leaving some vulnerabilities firmly outside the reach of this technique.

There have been numerous attempts to solve this problem. One of the early approaches - pioneered by Tavis Ormandy - is corpus distillation. The method relies on coverage signals to select a subset of interesting seeds from a massive, high-quality corpus of candidate files, and then fuzz them by traditional means. The approach works exceptionally well, but requires such a corpus to be readily available. In addition, block coverage measurements provide only a very simplistic understanding of program state, and are less useful for guiding the fuzzing effort in the long haul.

Other, more sophisticated research has focused on techniques such as program flow analysis ("concolic execution"), symbolic execution, or static analysis. All these methods are extremely promising in experimental settings, but tend to suffer from reliability and performance problems in practical uses - and currently do not offer a viable alternative to "dumb" fuzzing techniques.

2) The afl-fuzz approach

American Fuzzy Lop is a brute-force fuzzer coupled with an exceedingly simple but rock-solid instrumentation-guided genetic algorithm. It uses a modified form of edge coverage to effortlessly pick up subtle, local-scale changes to program control flow.

Simplifying a bit, the overall algorithm can be summed up as:

  1. Load user-supplied initial test cases into the queue,

  2. Take next input file from the queue,

  3. Attempt to trim the test case to the smallest size that doesn't alter the measured behavior of the program,

  4. Repeatedly mutate the file using a balanced and well-researched variety of traditional fuzzing strategies,

  5. If any of the generated mutations resulted in a new state transition recorded by the instrumentation, add mutated output as a new entry in the queue.

  6. Go to 2.

The discovered test cases are also periodically culled to eliminate ones that have been obsoleted by newer, higher-coverage finds; and undergo several other instrumentation-driven effort minimization steps.

As a side result of the fuzzing process, the tool creates a small, self-contained corpus of interesting test cases. These are extremely useful for seeding other, labor- or resource-intensive testing regimes - for example, for stress-testing browsers, office applications, graphics suites, or closed-source tools.

The fuzzer is thoroughly tested to deliver out-of-the-box performance far superior to blind fuzzing or coverage-only tools.

3) Instrumenting programs for use with AFL

When source code is available, instrumentation can be injected by a companion tool that works as a drop-in replacement for gcc or clang in any standard build process for third-party code.

The instrumentation has a fairly modest performance impact; in conjunction with other optimizations implemented by afl-fuzz, most programs can be fuzzed as fast or even faster than possible with traditional tools.

The correct way to recompile the target program may vary depending on the specifics of the build process, but a nearly-universal approach would be:

$ CC=/path/to/afl/afl-gcc ./configure
$ make clean all

For C++ programs, you'd would also want to set CXX=/path/to/afl/afl-g++.

The clang wrappers (afl-clang and afl-clang++) can be used in the same way; clang users may also opt to leverage a higher-performance instrumentation mode, as described in llvm_mode/README.llvm.

When testing libraries, you need to find or write a simple program that reads data from stdin or from a file and passes it to the tested library. In such a case, it is essential to link this executable against a static version of the instrumented library, or to make sure that the correct .so file is loaded at runtime (usually by setting LD_LIBRARY_PATH). The simplest option is a static build, usually possible via:

$ CC=/path/to/afl/afl-gcc ./configure --disable-shared

Setting AFL_HARDEN=1 when calling 'make' will cause the CC wrapper to automatically enable code hardening options that make it easier to detect simple memory bugs. Libdislocator, a helper library included with AFL (see libdislocator/README.dislocator) can help uncover heap corruption issues, too.

PS. ASAN users are advised to review notes_for_asan.txt file for important caveats.

4) Instrumenting binary-only apps

When source code is NOT available, the fuzzer offers experimental support for fast, on-the-fly instrumentation of black-box binaries. This is accomplished with a version of QEMU running in the lesser-known "user space emulation" mode.

QEMU is a project separate from AFL, but you can conveniently build the feature by doing:

$ cd qemu_mode
$ ./build_qemu_support.sh

For additional instructions and caveats, see qemu_mode/README.qemu.

The mode is approximately 2-5x slower than compile-time instrumentation, is less conductive to parallelization, and may have some other quirks.

5) Choosing initial test cases

To operate correctly, the fuzzer requires one or more starting file that contains a good example of the input data normally expected by the targeted application. There are two basic rules:

  • Keep the files small. Under 1 kB is ideal, although not strictly necessary. For a discussion of why size matters, see perf_tips.txt.

  • Use multiple test cases only if they are functionally different from each other. There is no point in using fifty different vacation photos to fuzz an image library.

You can find many good examples of starting files in the testcases/ subdirectory that comes with this tool.

PS. If a large corpus of data is available for screening, you may want to use the afl-cmin utility to identify a subset of functionally distinct files that exercise different code paths in the target binary.

6) Fuzzing binaries

The fuzzing process itself is carried out by the afl-fuzz utility. This program requires a read-only directory with initial test cases, a separate place to store its findings, plus a path to the binary to test.

For target binaries that accept input directly from stdin, the usual syntax is:

$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program [...params...]

For programs that take input from a file, use '@@' to mark the location in the target's command line where the input file name should be placed. The fuzzer will substitute this for you:

$ ./afl-fuzz -i testcase_dir -o findings_dir /path/to/program @@

You can also use the -f option to have the mutated data written to a specific file. This is useful if the program expects a particular file extension or so.

Non-instrumented binaries can be fuzzed in the QEMU mode (add -Q in the command line) or in a traditional, blind-fuzzer mode (specify -n).

You can use -t and -m to override the default timeout and memory limit for the executed process; rare examples of targets that may need these settings touched include compilers and video decoders.

Tips for optimizing fuzzing performance are discussed in perf_tips.txt.

Note that afl-fuzz starts by performing an array of deterministic fuzzing steps, which can take several days, but tend to produce neat test cases. If you want quick & dirty results right away - akin to zzuf and other traditional fuzzers - add the -d option to the command line.

7) Interpreting output

See the status_screen.txt file for information on how to interpret the displayed stats and monitor the health of the process. Be sure to consult this file especially if any UI elements are highlighted in red.

The fuzzing process will continue until you press Ctrl-C. At minimum, you want to allow the fuzzer to complete one queue cycle, which may take anywhere from a couple of hours to a week or so.

There are three subdirectories created within the output directory and updated in real time:

  • queue/ - test cases for every distinctive execution path, plus all the starting files given by the user. This is the synthesized corpus mentioned in section 2. Before using this corpus for any other purposes, you can shrink it to a smaller size using the afl-cmin tool. The tool will find a smaller subset of files offering equivalent edge coverage.

  • crashes/ - unique test cases that cause the tested program to receive a fatal signal (e.g., SIGSEGV, SIGILL, SIGABRT). The entries are grouped by the received signal.

  • hangs/ - unique test cases that cause the tested program to time out. The default time limit before something is classified as a hang is the larger of 1 second and the value of the -t parameter. The value can be fine-tuned by setting AFL_HANG_TMOUT, but this is rarely necessary.

Crashes and hangs are considered "unique" if the associated execution paths involve any state transitions not seen in previously-recorded faults. If a single bug can be reached in multiple ways, there will be some count inflation early in the process, but this should quickly taper off.

The file names for crashes and hangs are correlated with parent, non-faulting queue entries. This should help with debugging.

When you can't reproduce a crash found by afl-fuzz, the most likely cause is that you are not setting the same memory limit as used by the tool. Try:

$ LIMIT_MB=50
$ ( ulimit -Sv $[LIMIT_MB << 10]; /path/to/tested_binary ... )

Change LIMIT_MB to match the -m parameter passed to afl-fuzz. On OpenBSD, also change -Sv to -Sd.

Any existing output directory can be also used to resume aborted jobs; try:

$ ./afl-fuzz -i- -o existing_output_dir [...etc...]

If you have gnuplot installed, you can also generate some pretty graphs for any active fuzzing task using afl-plot. For an example of how this looks like, see http://lcamtuf.coredump.cx/afl/plot/.

8) Parallelized fuzzing

Every instance of afl-fuzz takes up roughly one core. This means that on multi-core systems, parallelization is necessary to fully utilize the hardware. For tips on how to fuzz a common target on multiple cores or multiple networked machines, please refer to parallel_fuzzing.txt.

The parallel fuzzing mode also offers a simple way for interfacing AFL to other fuzzers, to symbolic or concolic execution engines, and so forth; again, see the last section of parallel_fuzzing.txt for tips.

9) Fuzzer dictionaries

By default, afl-fuzz mutation engine is optimized for compact data formats - say, images, multimedia, compressed data, regular expression syntax, or shell scripts. It is somewhat less suited for languages with particularly verbose and redundant verbiage - notably including HTML, SQL, or JavaScript.

To avoid the hassle of building syntax-aware tools, afl-fuzz provides a way to seed the fuzzing process with an optional dictionary of language keywords, magic headers, or other special tokens associated with the targeted data type -- and use that to reconstruct the underlying grammar on the go:

http://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html

To use this feature, you first need to create a dictionary in one of the two formats discussed in dictionaries/README.dictionaries; and then point the fuzzer to it via the -x option in the command line.

(Several common dictionaries are already provided in that subdirectory, too.)

There is no way to provide more structured descriptions of the underlying syntax, but the fuzzer will likely figure out some of this based on the instrumentation feedback alone. This actually works in practice, say:

http://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html

PS. Even when no explicit dictionary is given, afl-fuzz will try to extract existing syntax tokens in the input corpus by watching the instrumentation very closely during deterministic byte flips. This works for some types of parsers and grammars, but isn't nearly as good as the -x mode.

If a dictionary is really hard to come by, another option is to let AFL run for a while, and then use the token capture library that comes as a companion utility with AFL. For that, see libtokencap/README.tokencap.

10) Crash triage

The coverage-based grouping of crashes usually produces a small data set that can be quickly triaged manually or with a very simple GDB or Valgrind script. Every crash is also traceable to its parent non-crashing test case in the queue, making it easier to diagnose faults.

Having said that, it's important to acknowledge that some fuzzing crashes can be difficult to quickly evaluate for exploitability without a lot of debugging and code analysis work. To assist with this task, afl-fuzz supports a very unique "crash exploration" mode enabled with the -C flag.

In this mode, the fuzzer takes one or more crashing test cases as the input, and uses its feedback-driven fuzzing strategies to very quickly enumerate all code paths that can be reached in the program while keeping it in the crashing state.

Mutations that do not result in a crash are rejected; so are any changes that do not affect the execution path.

The output is a small corpus of files that can be very rapidly examined to see what degree of control the attacker has over the faulting address, or whether it is possible to get past an initial out-of-bounds read - and see what lies beneath.

Oh, one more thing: for test case minimization, give afl-tmin a try. The tool can be operated in a very simple way:

$ ./afl-tmin -i test_case -o minimized_result -- /path/to/program [...]

The tool works with crashing and non-crashing test cases alike. In the crash mode, it will happily accept instrumented and non-instrumented binaries. In the non-crashing mode, the minimizer relies on standard AFL instrumentation to make the file simpler without altering the execution path.

The minimizer accepts the -m, -t, -f and @@ syntax in a manner compatible with afl-fuzz.

Another recent addition to AFL is the afl-analyze tool. It takes an input file, attempts to sequentially flip bytes, and observes the behavior of the tested program. It then color-codes the input based on which sections appear to be critical, and which are not; while not bulletproof, it can often offer quick insights into complex file formats. More info about its operation can be found near the end of technical_details.txt.

11) Going beyond crashes

Fuzzing is a wonderful and underutilized technique for discovering non-crashing design and implementation errors, too. Quite a few interesting bugs have been found by modifying the target programs to call abort() when, say:

  • Two bignum libraries produce different outputs when given the same fuzzer-generated input,

  • An image library produces different outputs when asked to decode the same input image several times in a row,

  • A serialization / deserialization library fails to produce stable outputs when iteratively serializing and deserializing fuzzer-supplied data,

  • A compression library produces an output inconsistent with the input file when asked to compress and then decompress a particular blob.

Implementing these or similar sanity checks usually takes very little time; if you are the maintainer of a particular package, you can make this code conditional with #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION (a flag also shared with libfuzzer) or #ifdef __AFL_COMPILER (this one is just for AFL).

12) Common-sense risks

Please keep in mind that, similarly to many other computationally-intensive tasks, fuzzing may put strain on your hardware and on the OS. In particular:

  • Your CPU will run hot and will need adequate cooling. In most cases, if cooling is insufficient or stops working properly, CPU speeds will be automatically throttled. That said, especially when fuzzing on less suitable hardware (laptops, smartphones, etc), it's not entirely impossible for something to blow up.

  • Targeted programs may end up erratically grabbing gigabytes of memory or filling up disk space with junk files. AFL tries to enforce basic memory limits, but can't prevent each and every possible mishap. The bottom line is that you shouldn't be fuzzing on systems where the prospect of data loss is not an acceptable risk.

  • Fuzzing involves billions of reads and writes to the filesystem. On modern systems, this will be usually heavily cached, resulting in fairly modest "physical" I/O - but there are many factors that may alter this equation. It is your responsibility to monitor for potential trouble; with very heavy I/O, the lifespan of many HDDs and SSDs may be reduced.

    A good way to monitor disk I/O on Linux is the 'iostat' command:

    $ iostat -d 3 -x -k [...optional disk ID...]

13) Known limitations & areas for improvement

Here are some of the most important caveats for AFL:

  • AFL detects faults by checking for the first spawned process dying due to a signal (SIGSEGV, SIGABRT, etc). Programs that install custom handlers for these signals may need to have the relevant code commented out. In the same vein, faults in child processed spawned by the fuzzed target may evade detection unless you manually add some code to catch that.

  • As with any other brute-force tool, the fuzzer offers limited coverage if encryption, checksums, cryptographic signatures, or compression are used to wholly wrap the actual data format to be tested.

    To work around this, you can comment out the relevant checks (see experimental/libpng_no_checksum/ for inspiration); if this is not possible, you can also write a postprocessor, as explained in experimental/post_library/.

  • There are some unfortunate trade-offs with ASAN and 64-bit binaries. This isn't due to any specific fault of afl-fuzz; see notes_for_asan.txt for tips.

  • There is no direct support for fuzzing network services, background daemons, or interactive apps that require UI interaction to work. You may need to make simple code changes to make them behave in a more traditional way. Preeny may offer a relatively simple option, too - see: https://github.com/zardus/preeny

    Some useful tips for modifying network-based services can be also found at: https://www.fastly.com/blog/how-to-fuzz-server-american-fuzzy-lop

  • AFL doesn't output human-readable coverage data. If you want to monitor coverage, use afl-cov from Michael Rash: https://github.com/mrash/afl-cov

  • Occasionally, sentient machines rise against their creators. If this happens to you, please consult http://lcamtuf.coredump.cx/prep/.

Beyond this, see INSTALL for platform-specific tips.

14) Special thanks

Many of the improvements to afl-fuzz wouldn't be possible without feedback, bug reports, or patches from:

  Jann Horn                             Hanno Boeck
  Felix Groebert                        Jakub Wilk
  Richard W. M. Jones                   Alexander Cherepanov
  Tom Ritter                            Hovik Manucharyan
  Sebastian Roschke                     Eberhard Mattes
  Padraig Brady                         Ben Laurie
  @dronesec                             Luca Barbato
  Tobias Ospelt                         Thomas Jarosch
  Martin Carpenter                      Mudge Zatko
  Joe Zbiciak                           Ryan Govostes
  Michael Rash                          William Robinet
  Jonathan Gray                         Filipe Cabecinhas
  Nico Weber                            Jodie Cunningham
  Andrew Griffiths                      Parker Thompson
  Jonathan Neuschfer                    Tyler Nighswander
  Ben Nagy                              Samir Aguiar
  Aidan Thornton                        Aleksandar Nikolich
  Sam Hakim                             Laszlo Szekeres
  David A. Wheeler                      Turo Lamminen
  Andreas Stieger                       Richard Godbee
  Louis Dassy                           teor2345
  Alex Moneger                          Dmitry Vyukov
  Keegan McAllister                     Kostya Serebryany
  Richo Healey                          Martijn Bogaard
  rc0r                                  Jonathan Foote
  Christian Holler                      Dominique Pelle
  Jacek Wielemborek                     Leo Barnes
  Jeremy Barnes                         Jeff Trull
  Guillaume Endignoux                   ilovezfs
  Daniel Godas-Lopez                    Franjo Ivancic
  Austin Seipp                          Daniel Komaromy
  Daniel Binderman                      Jonathan Metzman
  Vegard Nossum                         Jan Kneschke
  Kurt Roeckx                           Marcel Bohme
  Van-Thuan Pham                        Abhik Roychoudhury
  Joshua J. Drake                       Toby Hutton
  Rene Freingruber                      Sergey Davidoff
  Sami Liedes                           Craig Young
  Andrzej Jackowski                     Daniel Hodson

Thank you!

15) Contact

Questions? Concerns? Bug reports? Please use GitHub.

There is also a mailing list for the project; to join, send a mail to [email protected]. Or, if you prefer to browse archives first, try: https://groups.google.com/group/afl-users.

Enrich IP addresses with metadata and security IoC

Stratosphere IP enrich Get an IP address and enrich it with metadata and IoC You need API keys for VirusTotal and PassiveTotal (RiskIQ) How to use fro

Stratosphere IPS 10 Sep 25, 2022
Tool for ROS 2 IP Discovery + System Monitoring

Monitor the status of computers on a network using the DDS function of ROS2.

Ar-Ray 33 Apr 03, 2022
Publish GPU miner info to MQTT

Miner2MQTT Доступ к вашему GPU майнеру через MQTT. Изменения 1.0 EXE файл для Windows 1.1 Управление вентиляторами видеокарт (Linux) Упраление power l

Dmitry Bukhvalov 5 Aug 21, 2022
E4GL3OS1NT - Simple Information Gathering Tool

E4GL30S1NT Features userrecon - username reconnaissance facedumper - dump facebook information mailfinder - find email with specific name godorker - d

C0MPL3XDEV 195 Dec 21, 2022
Asynchronous For Python(asyncio)

asyncio is a library to write concurrent code using the async/await syntax.asyncio is used as a foundation for multiple Python asynchronous frameworks that provide high-performance network and web-se

Janak raikhola 0 Feb 05, 2022
🎥 PYnema is a simple UDP server written in python, allows you to watch downloaded videos.

🎥 PYnema is a simple UDP server written in python, allows you to watch downloaded videos.

Jan Kupczyk 1 Jan 16, 2022
Heroku Cloudflare App Domain

Heroku Cloudflare App Domain Creating branded herokuapp.com-like domains using Cloudflare, based on the app name (eg my-app-prod.example.com). Feature

Torchbox 2 Oct 04, 2022
Mass Reverse IP Dibuat Dengan Python 3 Dan Ada Fitur Filter.

Reverse IP Tools Description. Reverse IP is a method to map an IP address to a sub domain. This tool is made in the python 3 programming language. Fea

Wan Naz ID 6 Oct 24, 2022
Web-server with a parser, connection to DBMS, and the Hugging Face.

Final_Project Web-server with parser, connection to DBMS and the Hugging Face. Team: Aisha Bazylzhanova(SE-2004), Arysbay Dastan(SE-2004) Installation

Aisha Bazylzhanova 2 Nov 18, 2021
A simple multi-threaded time server and client in python.

time-server-client A simple multi-threaded time server and client in Python. This uses the latest match/case command found in Python 3.10 so requires

Zeeshan Mulk 1 Jan 29, 2022
Very simple FTP client, sync folder to FTP server, use python, opensource

ftp-sync-python Opensource, A way to safe your data, avoid lost data by Virus, Randsomware Some functions: Upload a folder automatically to FTP server

4 Sep 13, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
TunnelProxy 是一个本地隧道代理,可以从fofa爬取免费的socks代理,然后构建代理池,如果一个代理失效,会自动切换

TunnelProxy 是一个本地隧道代理,可以从fofa爬取免费的socks代理,然后构建代理池,如果一个代理失效,会自动切换。 应用场景 渗透测试需要访问某些国内网站(比如edu的),想要隐藏自己,但是国外代理不能访问,也没有稳定的可用代理的时候。 之后,可能我会增加国外代理,实现白嫖科学上网。

urdr-gungnir 45 Nov 17, 2022
KoreaVPN - Create a VPN App for Mac Using Automator

VPN app 만들기 (a.k.a. KoreaVPN) VPN을 사용하기 위해 들어가는 10초의 시간을 아끼고, 귀찮음을 최소화 하기 위해 크롤링

DongHee 6 Jan 17, 2022
Python Program to connect to different VPN servers autoatically using Windscribe VPN.

AutomateVPN What is VPN ? VPN stands for Virtual Private Network , it is a technology that creates a safe and encrypted connectionover a less secure n

Vivek 1 Oct 27, 2021
Mass querying whois records using whois tool

Mass querying whois records using whois tool

Mohamed Elbadry 24 Nov 10, 2022
Raspberry Pi Based Serial Console Server, with PushBullet Notification of IP changes, Automatic VPN termination, custom menu, Power Outlet Control, and a lot more

ConsolePi Acts as a serial Console Server, allowing you to remotely connect to ConsolePi via Telnet/SSH/bluetooth to gain Console Access to devices co

120 Jan 05, 2023
A database-based CDN node supporting PostgreSQL and MongoDB backends.

A simple to use database-based deployable CDN node for hobbyist developers who wish to have their own CDN!

Vish M 10 Nov 19, 2022
Proxlist - Retrieve proxy servers.

Finding and storing a list of proxies can be taxing - especially ones that are free and may not work only minutes from now. proxlist will validate the proxy and return a rotating random proxy to you

Justin Hammond 2 Mar 17, 2022
Makes dynamically updating your Cloudflare DNS records a bit easier ⏩👍😎

Easy Dynamic Cloudflare DNS Updater Makes dynamically updating your Cloudflare DNS records a bit easier ⏩ 👍 😎 If using it as a 'Dynamic DNS' client,

Zac Koch 3 Dec 19, 2021