PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

Overview

PASSL

Introduction

PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to accelerate research cycle in self-supervised learning: from designing a new self-supervised task to evaluating the learned representations.

  • Reproducible implementation of SOTA in Self-Supervision: Existing SOTA in Self-Supervision are implemented - SimCLR, MoCo(v1),MoCo(v2), MoCo-BYOL, CLIP. BYOL is coming soon. Also supports supervised trainings.
  • Modular: Easy to build new tasks and reuse the existing components from other tasks (Trainer, models and heads, data transforms, etc.).

Installation

Implemented Models

Benchmark Linear Image Classification on ImageNet-1K

epochs official results passl results Backbone Model
MoCo 200 60.6 60.64 ResNet-50 download
SimCLR 100 64.5 65.3 ResNet-50 download
MoCo v2 200 67.7 67.72 ResNet-50 download
MoCo-BYOL 300 71.56 72.10 ResNet-50 download
BYOL 300 72.50 71.62 ResNet-50 download

Getting Started

Please see GETTING_STARTED.md for the basic usage of PASSL.

Tutorials

Comments
  • MLP-Mixer: An all-MLP Architecture for Vision

    MLP-Mixer: An all-MLP Architecture for Vision

    readme文件里的两个模型的TOP1 是不是写反了?模型大的准确度比模型小的准确度小一些?

    Arch | Weight | Top-1 Acc | Top-5 Acc | Crop ratio | # Params -- | -- | -- | -- | -- | -- mlp_mixer_b16_224 | pretrain 1k | 76.60 | 92.23 | 0.875 | 60.0M mlp_mixer_l16_224 | pretrain 1k | 72.06 | 87.67 | 0.875 | 208.2M

    opened by gaorui999 3
  • 我很关注图像分类的自监督进展

    我很关注图像分类的自监督进展

    小弟想问问,对于图像分类的自监督,目前是什么进展呢?比如猫狗分类这种典型的二分类准确率如何?imagenet1k分类准确率如何?PASSL里面的关于图像分类的自监督算法或者模型,有哪些?能给个例子,让我知道如何使用吗?目前看到PASSLissues才1条,文档完全没看到.方便加个微信或者QQ聊几句吗?小弟对于图像分类的自监督高度重视.还有一个疑问,关于图像分类的自监督模型,是不是我给一堆图片,模型运行后,就会把图片归类呢?我需不需要给出类别的数量呢?说白了,我想知道图像分类的自监督的一个使用流程.现在都1.0了,该有点用处了吧.如果一个模型运行后,图像就分好类了,归纳为N类,我有什么办法判断分类的正确性呢?这方面有算法吗? 提了很多问题,跪求每个问题都回答一下,谢谢大佬.

    opened by yuwoyizhan 2
  • Unintended behavior in clip_logit_scale

    Unintended behavior in clip_logit_scale

    https://github.com/PaddlePaddle/PASSL/blob/83c49e6a5ba3444cee7f054122559d7759152764/passl/modeling/backbones/clip.py#L317

    check this issue for reference https://github.com/PaddlePaddle/Paddle/issues/43710

    Suggested approach (with non-public API)

    logit_scale_buffer = self.logit_scale.clip(-4.6, 4.6)
    logit_scale_buffer._share_buffer_to(self.logit_scale)
    
    opened by minogame 1
  • 建议

    建议

    1.passl很多文字都是英文的,包括快速使用等文档,希望可以提供中文文档. 2.希望知道图像分类自监督学习的技术研究目前到达什么程度了.比如猫狗这种二分类准确率如何,imagenet准确率如何,使用passl进行图像分类,需要给类别总数量吗? 3.能加个QQ或者微信聊几句吗?有些疑问,拜托了,大佬. QQ:1226194560 微信:18820785964

    opened by yuwoyizhan 1
  • fix bug of mixup for DeiT

    fix bug of mixup for DeiT

    DeiT/B-16 pretrained on ImageNet1K:

    [01/21 02:54:46] passl.engine.trainer INFO: Validate Epoch [290] acc1 (81.336), acc5 (95.544)
    [01/21 03:02:31] passl.engine.trainer INFO: Validate Epoch [291] acc1 (81.328), acc5 (95.580)
    [01/21 03:10:20] passl.engine.trainer INFO: Validate Epoch [292] acc1 (81.390), acc5 (95.608)
    [01/21 03:18:10] passl.engine.trainer INFO: Validate Epoch [293] acc1 (81.484), acc5 (95.636)
    [01/21 03:26:00] passl.engine.trainer INFO: Validate Epoch [294] acc1 (81.452), acc5 (95.600)
    [01/21 03:33:52] passl.engine.trainer INFO: Validate Epoch [295] acc1 (81.354), acc5 (95.528)
    [01/21 03:41:38] passl.engine.trainer INFO: Validate Epoch [296] acc1 (81.338), acc5 (95.562)
    [01/21 03:49:25] passl.engine.trainer INFO: Validate Epoch [297] acc1 (81.344), acc5 (95.542)
    [01/21 03:57:15] passl.engine.trainer INFO: Validate Epoch [298] acc1 (81.476), acc5 (95.550)
    [01/21 04:05:03] passl.engine.trainer INFO: Validate Epoch [299] acc1 (81.476), acc5 (95.572)
    [01/21 04:12:51] passl.engine.trainer INFO: Validate Epoch [300] acc1 (81.386), acc5 (95.536)
    
    opened by GuoxiaWang 1
  • BYOL的预训练中好像使用了gt_label?

    BYOL的预训练中好像使用了gt_label?

    • 在byol的config 中设置了 num_classes=1000: https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/configs/byol/byol_r50_IM.yaml#L34
    • 在model中设置了self.classifier = nn.Linear(embedding_dim, num_classes),并且forward中将classif_out和label一起传给了head

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/architectures/BYOL.py#L263

    • 在L2 Head中将对比loss和有监督的CE loss加在了一起返回

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/heads/l2_head.py#L43

    opened by youqingxiaozhua 0
  • [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    PR types

    New features

    PR changes

    APIs

    Describe

    • Task: https://github.com/PaddlePaddle/Paddle/issues/41482
    • 添加 passl.model.architectures.dino

    Peformance

    | Model | Official | Passl | | ---- | ---- | ---- | | DINO | 74.0 | 73.6 |

    • [x] 预训练和linear probe代码
    • [ ] 预训练和linear probe权重
    • [ ] 文档
    • [ ] TIPC
    opened by fuqianya 0
Releases(v1.0.0)
  • v1.0.0(Feb 24, 2022)

    • 新增 XCiT 视觉 Transformer 模型 xcit_nano_12_p8_224 蒸馏模型训练指标对齐,感谢 @BrilliantYuKaimin 的高质量贡献 🎉 🎉 🎉

    PASSL飞桨自监督领域核心学习库,提供大量高精度的视觉自监督模型、视觉 Transformer 模型,并支持超大视觉模型分布式训练功能,旨在提升飞桨开发者在自监督领域建模效率,并提供基于飞桨框架2.2的超大视觉模型领域最佳实践

    Source code(tar.gz)
    Source code(zip)
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022