PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

Overview

PASSL

Introduction

PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to accelerate research cycle in self-supervised learning: from designing a new self-supervised task to evaluating the learned representations.

  • Reproducible implementation of SOTA in Self-Supervision: Existing SOTA in Self-Supervision are implemented - SimCLR, MoCo(v1),MoCo(v2), MoCo-BYOL, CLIP. BYOL is coming soon. Also supports supervised trainings.
  • Modular: Easy to build new tasks and reuse the existing components from other tasks (Trainer, models and heads, data transforms, etc.).

Installation

Implemented Models

Benchmark Linear Image Classification on ImageNet-1K

epochs official results passl results Backbone Model
MoCo 200 60.6 60.64 ResNet-50 download
SimCLR 100 64.5 65.3 ResNet-50 download
MoCo v2 200 67.7 67.72 ResNet-50 download
MoCo-BYOL 300 71.56 72.10 ResNet-50 download
BYOL 300 72.50 71.62 ResNet-50 download

Getting Started

Please see GETTING_STARTED.md for the basic usage of PASSL.

Tutorials

Comments
  • MLP-Mixer: An all-MLP Architecture for Vision

    MLP-Mixer: An all-MLP Architecture for Vision

    readme文件里的两个模型的TOP1 是不是写反了?模型大的准确度比模型小的准确度小一些?

    Arch | Weight | Top-1 Acc | Top-5 Acc | Crop ratio | # Params -- | -- | -- | -- | -- | -- mlp_mixer_b16_224 | pretrain 1k | 76.60 | 92.23 | 0.875 | 60.0M mlp_mixer_l16_224 | pretrain 1k | 72.06 | 87.67 | 0.875 | 208.2M

    opened by gaorui999 3
  • 我很关注图像分类的自监督进展

    我很关注图像分类的自监督进展

    小弟想问问,对于图像分类的自监督,目前是什么进展呢?比如猫狗分类这种典型的二分类准确率如何?imagenet1k分类准确率如何?PASSL里面的关于图像分类的自监督算法或者模型,有哪些?能给个例子,让我知道如何使用吗?目前看到PASSLissues才1条,文档完全没看到.方便加个微信或者QQ聊几句吗?小弟对于图像分类的自监督高度重视.还有一个疑问,关于图像分类的自监督模型,是不是我给一堆图片,模型运行后,就会把图片归类呢?我需不需要给出类别的数量呢?说白了,我想知道图像分类的自监督的一个使用流程.现在都1.0了,该有点用处了吧.如果一个模型运行后,图像就分好类了,归纳为N类,我有什么办法判断分类的正确性呢?这方面有算法吗? 提了很多问题,跪求每个问题都回答一下,谢谢大佬.

    opened by yuwoyizhan 2
  • Unintended behavior in clip_logit_scale

    Unintended behavior in clip_logit_scale

    https://github.com/PaddlePaddle/PASSL/blob/83c49e6a5ba3444cee7f054122559d7759152764/passl/modeling/backbones/clip.py#L317

    check this issue for reference https://github.com/PaddlePaddle/Paddle/issues/43710

    Suggested approach (with non-public API)

    logit_scale_buffer = self.logit_scale.clip(-4.6, 4.6)
    logit_scale_buffer._share_buffer_to(self.logit_scale)
    
    opened by minogame 1
  • 建议

    建议

    1.passl很多文字都是英文的,包括快速使用等文档,希望可以提供中文文档. 2.希望知道图像分类自监督学习的技术研究目前到达什么程度了.比如猫狗这种二分类准确率如何,imagenet准确率如何,使用passl进行图像分类,需要给类别总数量吗? 3.能加个QQ或者微信聊几句吗?有些疑问,拜托了,大佬. QQ:1226194560 微信:18820785964

    opened by yuwoyizhan 1
  • fix bug of mixup for DeiT

    fix bug of mixup for DeiT

    DeiT/B-16 pretrained on ImageNet1K:

    [01/21 02:54:46] passl.engine.trainer INFO: Validate Epoch [290] acc1 (81.336), acc5 (95.544)
    [01/21 03:02:31] passl.engine.trainer INFO: Validate Epoch [291] acc1 (81.328), acc5 (95.580)
    [01/21 03:10:20] passl.engine.trainer INFO: Validate Epoch [292] acc1 (81.390), acc5 (95.608)
    [01/21 03:18:10] passl.engine.trainer INFO: Validate Epoch [293] acc1 (81.484), acc5 (95.636)
    [01/21 03:26:00] passl.engine.trainer INFO: Validate Epoch [294] acc1 (81.452), acc5 (95.600)
    [01/21 03:33:52] passl.engine.trainer INFO: Validate Epoch [295] acc1 (81.354), acc5 (95.528)
    [01/21 03:41:38] passl.engine.trainer INFO: Validate Epoch [296] acc1 (81.338), acc5 (95.562)
    [01/21 03:49:25] passl.engine.trainer INFO: Validate Epoch [297] acc1 (81.344), acc5 (95.542)
    [01/21 03:57:15] passl.engine.trainer INFO: Validate Epoch [298] acc1 (81.476), acc5 (95.550)
    [01/21 04:05:03] passl.engine.trainer INFO: Validate Epoch [299] acc1 (81.476), acc5 (95.572)
    [01/21 04:12:51] passl.engine.trainer INFO: Validate Epoch [300] acc1 (81.386), acc5 (95.536)
    
    opened by GuoxiaWang 1
  • BYOL的预训练中好像使用了gt_label?

    BYOL的预训练中好像使用了gt_label?

    • 在byol的config 中设置了 num_classes=1000: https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/configs/byol/byol_r50_IM.yaml#L34
    • 在model中设置了self.classifier = nn.Linear(embedding_dim, num_classes),并且forward中将classif_out和label一起传给了head

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/architectures/BYOL.py#L263

    • 在L2 Head中将对比loss和有监督的CE loss加在了一起返回

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/heads/l2_head.py#L43

    opened by youqingxiaozhua 0
  • [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    PR types

    New features

    PR changes

    APIs

    Describe

    • Task: https://github.com/PaddlePaddle/Paddle/issues/41482
    • 添加 passl.model.architectures.dino

    Peformance

    | Model | Official | Passl | | ---- | ---- | ---- | | DINO | 74.0 | 73.6 |

    • [x] 预训练和linear probe代码
    • [ ] 预训练和linear probe权重
    • [ ] 文档
    • [ ] TIPC
    opened by fuqianya 0
Releases(v1.0.0)
  • v1.0.0(Feb 24, 2022)

    • 新增 XCiT 视觉 Transformer 模型 xcit_nano_12_p8_224 蒸馏模型训练指标对齐,感谢 @BrilliantYuKaimin 的高质量贡献 🎉 🎉 🎉

    PASSL飞桨自监督领域核心学习库,提供大量高精度的视觉自监督模型、视觉 Transformer 模型,并支持超大视觉模型分布式训练功能,旨在提升飞桨开发者在自监督领域建模效率,并提供基于飞桨框架2.2的超大视觉模型领域最佳实践

    Source code(tar.gz)
    Source code(zip)
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Namish Khanna 40 Oct 11, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022