Approaches to modeling terrain and maps in python

Overview

topography 🌎

Python 3.8 Build Status Language grade: Python Total alerts

Contains different approaches to modeling terrain and topographic-style maps in python

image

Features

Inverse Distance Weighting (IDW)

A given point P(x, y) is determined by the values of its neighbors, inversely proportional to the distance of each neighbor.

P is more heavily influenced by nearer points via a weighting function w(x, y).

Steps

The value of P(x, y) is determined only by the closest raw data point.

This approach works best to get a "feel" for larger datasets. With few input points, the resulting map has little detail.

In the case of multiple equidistant points being closest, point values are stored, and averaged.

Bilinear

in progress 👷 🛠️

Bicubic

in progress 👷 🛠️

Install

pip install topography

Requirements

  • numpy
  • matplotlib

see the requirements.txt

Example

from topography.Map import Map
from topography.utils.io import getPointValuesFromCsv

# # make map from noise data
# noiseMaker = Noise((0, 50), (0, 50))
# noiseData = noiseMaker.getRandom(scaleFactor=1)
# M = Map(noiseData)

# make map from recorded data
rawData = getPointValuesFromCsv("tests/data/20x20.csv")
M = Map(rawData)

# # Display the inputted raw data values
M.showRawPointValues()

# interpolate the Map
M.idw(showWhenDone=True)

# Display the interpolated data values
M.showFilledPointValues()

# Save the data to a .csv file
# optionally, write to file as a matrix
# default is x, y, z
M.writeLastToCsv("idw_20x20", writeAsMatrix=True)
Comments
  • NN - Improvements and Possible Design Changes

    NN - Improvements and Possible Design Changes

    NN Improvements and Design Changes

    Consider breaking up the current implementation of NN

    • [x] current NN ➡️ Map.steps()
    • [ ] new NN via voroni tesselation ➡️ Map.voroni() or Map.nn()

    image

    feature 
    opened by XDwightsBeetsX 1
  • Noise Generation

    Noise Generation

    Add Noise Generators

    This will be nice for quickly making cool topography maps

    start with random noise, but ideas for later...

    feature 
    opened by XDwightsBeetsX 1
  • allows for user to input map size

    allows for user to input map size

    Custom Map Dimensions, closes #5

    Can now customize views of the Map by specifying a custom Map(rawData, xRange=(lower, upper), yRange=(lower, upper))

    This does not impact the determination of points by interpolation, but does give a "sliced" view of the Map

    feature 
    opened by XDwightsBeetsX 1
  • Add Surface Plotting

    Add Surface Plotting

    New Surface Plot

    • In addition to the heatmap-style plot, add a surface representation plot of the Map
    • It should be displayed alongside the 2D Heatmap in a horizontal subplot
    • This may require some refactoring of the Map PointValue storage so that it can be used as a series of X, Y, Z lists
    • See this documentation on matplotlib

    Something Like This:

    | image | image | | :-: | :-: |

    feature 
    opened by XDwightsBeetsX 1
  • IDW Improvement - Neighborhooding

    IDW Improvement - Neighborhooding

    Add Neighborhooding to IDW

    • only apply IDW to a minimum number of nearby neighbors
      • the point of interest is more likely to be similar to nearby points
    feature 
    opened by XDwightsBeetsX 0
  • Added NN Interpolation

    Added NN Interpolation

    New NN Interpolation

    This is going to work better with larger data sets to get a "feel" for the Map.

    • Should add some noise generator to see how this looks with larger data sets.
    • Also add some docs, mentioning above
    • can add sophistication by grouping within a nearby region
    feature 
    opened by XDwightsBeetsX 0
  • Allow User to Input Map Size

    Allow User to Input Map Size

    Currently

    The size of the Map is determined by the user input RawData:

    width = self.xMax - self.xMin + 1
    height = self.yMax - self.yMin + 1
    

    Desired

    This should be changed to allow for the Instantiation of a Map's size to be set in the constructor.

    • Something like Map(rawData, xRange=(lower, upper), yRange=(lower, upper)) where lower and upper are inclusive
    • This change will have to be accounted for when finding max values
    • Undecided on if interpolation approaches should still consider these points
    feature 
    opened by XDwightsBeetsX 0
  • Bicubic Interpolation

    Bicubic Interpolation

    Add Bicubic Interpolation Scheme

    • [ ] in interpolaion.py add bicubic(thisPt, rawPts)
    • [ ] in tests/test_interpolate add test_bicubic.py
    • [ ] in tests/visual/1d add test_visual_bicubic.py
    • [ ] in Map.py add Map.bicubic(showWhenDone=True)

    image

    also see wikipedia

    feature tests 
    opened by XDwightsBeetsX 0
  • Bilinear Interpolation

    Bilinear Interpolation

    Add Bilinear Interpolation Scheme

    • [ ] in interpolaion.py add bilinear(thisPt, rawPts)
    • [ ] in tests/test_interpolate add test_bilinear.py
    • [ ] in tests/visual/1d add test_visual_bilinear.py
    • [ ] in Map.py add Map.bilinear(showWhenDone=True)

    image

    also see wikipedia

    feature tests 
    opened by XDwightsBeetsX 3
Releases(1.0.0)
  • 1.0.0(Jun 27, 2021)

    check out the new topography package on pypi 🌎

    This package provides some visualization and interpolation for topography data using the Map data structure

    • read data from file into PointValues using topography.utils.io.getPointValuesFromCsv(filename)
    • make a map with M = Map(rawData) and perform some interpolation like Map.idw(showWhenDone=True)
    • write the results to a data file with M.writeLastToCsv("cool_idw_interpolation", writeAsMatrix=True)

    Current interpolation schemes:

    • inverse distance weighting
    • step function
    Source code(tar.gz)
    Source code(zip)
Owner
John Gutierrez
Texas A&M MEEN '22. CS minor. Texas Water Safari Finisher '19 '21
John Gutierrez
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022