Repository of 3D Object Detection with Pointformer (CVPR2021)

Overview

3D Object Detection with Pointformer

This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This work is developed on the top of MMDetection3D toolbox and includes the models and results on SUN RGB-D and ScanNet datasets in the paper.

Overall Structure

More models results on KITTI and nuScenes datasets will be released soon.

Installation and Usage

The code is developed with MMDetection3D v0.6.1 and works well with v0.14.0.

Dependencies

  • NVIDIA GPU + CUDA 10.2
  • Python 3.8 (Recommend to use Anaconda)
  • PyTorch == 1.8.0
  • mmcv-full == 1.3.7
  • mmdet == 2.11.0
  • mmsegmentation == 0.13.0

Installation

  1. Install dependencies following their guidelines.
  2. Clone and install mmdet3d in develop mode.
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
python setup.py develop
  1. Add the files in this repo into the directories in mmdet3d.

Training and Testing

Download the pretrained weights from Google Drive or Tsinghua Cloud and put them in the checkpoints folder. Use votenet_ptr_sunrgbd-3d-10class as an example:

# Training
bash -x tools/dist_train.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py 8

# Testing 
bash tools/dist_test.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py checkpoints/votenet_ptr_sunrgbd-3d-10class.pth 8 --eval mAP

Results

SUN RGB-D

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8343 0.9515 0.5556 0.7029
table 0.5353 0.8705 0.2344 0.4604
sofa 0.6588 0.9171 0.4979 0.6715
chair 0.7681 0.8700 0.5664 0.6703
toilet 0.9117 0.9931 0.5538 0.7103
desk 0.2458 0.8050 0.0754 0.3395
dresser 0.3626 0.8028 0.2357 0.4908
night_stand 0.6701 0.9020 0.4525 0.6196
bookshelf 0.3383 0.6809 0.0968 0.2624
bathtub 0.7821 0.8980 0.4259 0.5510
Overall 0.6107 0.8691 0.3694 0.5479

ScanNet

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4548 0.7930 0.1757 0.4435
bed 0.8839 0.9506 0.8006 0.8889
chair 0.9011 0.9386 0.7562 0.8136
sofa 0.8915 0.9794 0.6619 0.8041
table 0.6763 0.8714 0.4858 0.6971
door 0.5413 0.7216 0.2107 0.4283
window 0.4821 0.7021 0.1504 0.2979
bookshelf 0.5255 0.8701 0.4422 0.7273
picture 0.1815 0.3649 0.0748 0.1351
counter 0.6210 0.8654 0.2333 0.3846
desk 0.6859 0.9370 0.3774 0.6535
curtain 0.5522 0.7910 0.3156 0.4627
refrigerator 0.5215 0.9649 0.4028 0.7193
showercurtrain 0.6709 0.9643 0.1941 0.5000
toilet 0.9922 1.0000 0.8210 0.8793
sink 0.6361 0.7347 0.4119 0.5000
bathtub 0.8710 0.8710 0.8375 0.8387
garbagebin 0.4762 0.7264 0.2244 0.4604
Overall 0.6425 0.8359 0.4209 0.5908

For more details of experimetns please refer to the paper.

Acknowledgement

This code is based on MMDetection3D.

Citation

If you find our work is useful in your research, please consider citing:

@InProceedings{Pan_2021_CVPR,
    author    = {Pan, Xuran and Xia, Zhuofan and Song, Shiji and Li, Li Erran and Huang, Gao},
    title     = {3D Object Detection With Pointformer},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7463-7472}
}

@misc{pan20203d,
  title={3D Object Detection with Pointformer}, 
  author={Xuran Pan and Zhuofan Xia and Shiji Song and Li Erran Li and Gao Huang},
  year={2020},
  eprint={2012.11409},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
Owner
Zhuofan Xia
Zhuofan Xia
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022