Repository of 3D Object Detection with Pointformer (CVPR2021)

Overview

3D Object Detection with Pointformer

This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This work is developed on the top of MMDetection3D toolbox and includes the models and results on SUN RGB-D and ScanNet datasets in the paper.

Overall Structure

More models results on KITTI and nuScenes datasets will be released soon.

Installation and Usage

The code is developed with MMDetection3D v0.6.1 and works well with v0.14.0.

Dependencies

  • NVIDIA GPU + CUDA 10.2
  • Python 3.8 (Recommend to use Anaconda)
  • PyTorch == 1.8.0
  • mmcv-full == 1.3.7
  • mmdet == 2.11.0
  • mmsegmentation == 0.13.0

Installation

  1. Install dependencies following their guidelines.
  2. Clone and install mmdet3d in develop mode.
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
python setup.py develop
  1. Add the files in this repo into the directories in mmdet3d.

Training and Testing

Download the pretrained weights from Google Drive or Tsinghua Cloud and put them in the checkpoints folder. Use votenet_ptr_sunrgbd-3d-10class as an example:

# Training
bash -x tools/dist_train.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py 8

# Testing 
bash tools/dist_test.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py checkpoints/votenet_ptr_sunrgbd-3d-10class.pth 8 --eval mAP

Results

SUN RGB-D

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8343 0.9515 0.5556 0.7029
table 0.5353 0.8705 0.2344 0.4604
sofa 0.6588 0.9171 0.4979 0.6715
chair 0.7681 0.8700 0.5664 0.6703
toilet 0.9117 0.9931 0.5538 0.7103
desk 0.2458 0.8050 0.0754 0.3395
dresser 0.3626 0.8028 0.2357 0.4908
night_stand 0.6701 0.9020 0.4525 0.6196
bookshelf 0.3383 0.6809 0.0968 0.2624
bathtub 0.7821 0.8980 0.4259 0.5510
Overall 0.6107 0.8691 0.3694 0.5479

ScanNet

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4548 0.7930 0.1757 0.4435
bed 0.8839 0.9506 0.8006 0.8889
chair 0.9011 0.9386 0.7562 0.8136
sofa 0.8915 0.9794 0.6619 0.8041
table 0.6763 0.8714 0.4858 0.6971
door 0.5413 0.7216 0.2107 0.4283
window 0.4821 0.7021 0.1504 0.2979
bookshelf 0.5255 0.8701 0.4422 0.7273
picture 0.1815 0.3649 0.0748 0.1351
counter 0.6210 0.8654 0.2333 0.3846
desk 0.6859 0.9370 0.3774 0.6535
curtain 0.5522 0.7910 0.3156 0.4627
refrigerator 0.5215 0.9649 0.4028 0.7193
showercurtrain 0.6709 0.9643 0.1941 0.5000
toilet 0.9922 1.0000 0.8210 0.8793
sink 0.6361 0.7347 0.4119 0.5000
bathtub 0.8710 0.8710 0.8375 0.8387
garbagebin 0.4762 0.7264 0.2244 0.4604
Overall 0.6425 0.8359 0.4209 0.5908

For more details of experimetns please refer to the paper.

Acknowledgement

This code is based on MMDetection3D.

Citation

If you find our work is useful in your research, please consider citing:

@InProceedings{Pan_2021_CVPR,
    author    = {Pan, Xuran and Xia, Zhuofan and Song, Shiji and Li, Li Erran and Huang, Gao},
    title     = {3D Object Detection With Pointformer},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7463-7472}
}

@misc{pan20203d,
  title={3D Object Detection with Pointformer}, 
  author={Xuran Pan and Zhuofan Xia and Shiji Song and Li Erran Li and Gao Huang},
  year={2020},
  eprint={2012.11409},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
Owner
Zhuofan Xia
Zhuofan Xia
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022