Both social media sentiment and stock market data are crucial for stock price prediction

Overview

Relating Social Media to Stock Movements_DA-31st-December

Both social media sentiment and stock market data are crucial for stock price prediction. So, in this project we analyzed the dynamics of stock markets based on both social media news (text data) and stock prices (numerical data).

Understanding the Dataset

The dataset we are working on is a combination of Wallstreetbets-Reddit news and the Standard & Poor’s 500 (S&p 500) stock price from 2013 to 2018.

  • The news dataset contains the top 25 news from Reddit on each day from 2013 to 2018.

  • The S&P 500 contains the core stock market information for each day such as Open, Close, and Volume.

  • The SCORE of the dataset is whether the stock price is increase (labeled as 1) or decrease (labeled as 0) on that day.

EDA

Introduction:

  • data dataset comprises 5698 rows and 8 columns.
  • Dataset consists of continuous variable and float data type.
  • Dataset column variables 'Open', 'Close', 'High', 'Low', 'Volume', are the stock variables from historical dataset and other variables are showing polarity of news which are the derived variables using sentiment analysis as discussed in the above section.

Descriptive Statistics:

Using describe() we could get the following result for the numerical features

open high low close volume count 5697.000000 5697.000000 5697.000000 5698.000000 5.698000e+03 mean 88.139399 89.012936 87.245609 88.146015 1.718703e+06 std 32.666995 32.960833 32.363413 32.660301 1.248357e+06 min 30.380000 31.090000 29.730000 29.940000 1.000000e+02 25% 64.650000 65.310000 64.053300 64.672500 9.880475e+05 50% 80.750000 81.490000 79.990000 80.750000 1.460298e+06 75% 105.270000 106.270000 104.350000 105.345000 2.135991e+06 max 201.240000 201.240000 198.160000 200.380000 3.378024e+07

Preprocessing and Sentiment Analysis

We filled out the NaN values in the missed three topics. And got the polarity and subjectivity for the news' topics. Polarity is of 'float' type and lies in the range of -1, 1, where 1

means a high positive sentiment, and -1 means a high negative sentiment.

So, they will be very helpful in determining the increase or decrease of the stock market.

Then we checked the missing values in the stock market information, it was complete. Then we merged the sentiment information (polarity ) by date with the stock market information (Open, High, Low, Close, Volume, Adj Close) in merged_data dataframe.

Before modeling and after splitting we scaled the data using standardization to shift the distribution to have a mean of zero and a standard deviation of one.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
rescaledValidationX = scaler.transform(X_valid)

fit_transform() is used on the training data so that we can scale the training data and also learn the scaling parameters of that data. Here, the model built by us will learn the mean and variance of the features of the training set. These learned parameters are then used to scale our test data.

transform() uses the same mean and variance as it is calculated from our training data to transform our test data. Thus, the parameters learned by our model using the training data will help us to transform our test data. As we do not want to be biased with our model, but we want our test data to be completely new and a surprise set for our model.

Preprocessing Again

Now, after observing the outliers in polarity of a lot of topics, we decided to concatenate all the 14 topics in one paragraph, then we can get only one column for polarity. So, we merged these data again with the stock market numerical information and got merged_data dataframe, then scaled it.

Model Building

Metrics considered for Model Evaluation

Accuracy , Precision , Recall and F1 Score

  • Accuracy: What proportion of actual positives and negatives is correctly classified?
  • Precision: What proportion of predicted positives are truly positive ?
  • Recall: What proportion of actual positives is correctly classified ?
  • F1 Score : Harmonic mean of Precision and Recall

Logistic Regression

  • Logistic Regression helps find how probabilities are changed with actions.
  • The function is defined as P(y) = 1 / 1+e^-(A+Bx)
  • Logistic regression involves finding the best fit S-curve where A is the intercept and B is the regression coefficient. The output of logistic regression is a probability score.

Choosing the features

After choosing model based on confusion matrix here where choose the features taking in consideration the deployment phase.

We know from the EDA that all the features are highly correlated and almost follow the same trend among the time. So, along with polarity and subjectivity we choose the open price with the assumption that the user knows the open price but not the close price and wants to figure out if the stock price will increase or decrease.

When we apply the logistic regression model accuracy dropped from 80% to 55%. So, we will use both Open and Close and exclude High, Low, Volume, Adj Close.

precision    recall  f1-score   support

           0       1.00      1.00      1.00   2563950
           1       0.00      0.00      0.00       968

    accuracy                           1.00   2564918
   macro avg       0.50      0.50      0.50   2564918
weighted avg       1.00      1.00      1.00   2564918







Owner
Vishal Singh Parmar
I am Vishal Singh Parmar, I have been pursuing B.Tech in Computer Science Engineering from Shivaji Rao Kadam Institute of Technology,
Vishal Singh Parmar
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022