Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

Overview

Real-Time Voice Cloning

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my thesis if you're curious or if you're looking for info I haven't documented. Mostly I would recommend giving a quick look to the figures beyond the introduction.

SV2TTS is a three-stage deep learning framework that allows to create a numerical representation of a voice from a few seconds of audio, and to use it to condition a text-to-speech model trained to generalize to new voices.

Video demonstration (click the picture):

Toolbox demo

Papers implemented

URL Designation Title Implementation source
1806.04558 SV2TTS Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis This repo
1802.08435 WaveRNN (vocoder) Efficient Neural Audio Synthesis fatchord/WaveRNN
1703.10135 Tacotron (synthesizer) Tacotron: Towards End-to-End Speech Synthesis fatchord/WaveRNN
1710.10467 GE2E (encoder) Generalized End-To-End Loss for Speaker Verification This repo

News

14/02/21: This repo now runs on PyTorch instead of Tensorflow, thanks to the help of @bluefish. If you wish to run the tensorflow version instead, checkout commit 5425557.

13/11/19: I'm now working full time and I will not maintain this repo anymore. To anyone who reads this:

  • If you just want to clone your voice (and not someone else's): I recommend our free plan on Resemble.AI. You will get a better voice quality and less prosody errors.
  • If this is not your case: proceed with this repository, but you might end up being disappointed by the results. If you're planning to work on a serious project, my strong advice: find another TTS repo. Go here for more info.

20/08/19: I'm working on resemblyzer, an independent package for the voice encoder. You can use your trained encoder models from this repo with it.

06/07/19: Need to run within a docker container on a remote server? See here.

25/06/19: Experimental support for low-memory GPUs (~2gb) added for the synthesizer. Pass --low_mem to demo_cli.py or demo_toolbox.py to enable it. It adds a big overhead, so it's not recommended if you have enough VRAM.

Setup

1. Install Requirements

Python 3.6 or 3.7 is needed to run the toolbox.

  • Install PyTorch (>=1.0.1).
  • Install ffmpeg.
  • Run pip install -r requirements.txt to install the remaining necessary packages.

2. Download Pretrained Models

Download the latest here.

3. (Optional) Test Configuration

Before you download any dataset, you can begin by testing your configuration with:

python demo_cli.py

If all tests pass, you're good to go.

4. (Optional) Download Datasets

For playing with the toolbox alone, I only recommend downloading LibriSpeech/train-clean-100. Extract the contents as /LibriSpeech/train-clean-100 where is a directory of your choosing. Other datasets are supported in the toolbox, see here. You're free not to download any dataset, but then you will need your own data as audio files or you will have to record it with the toolbox.

5. Launch the Toolbox

You can then try the toolbox:

python demo_toolbox.py -d
or
python demo_toolbox.py

depending on whether you downloaded any datasets. If you are running an X-server or if you have the error Aborted (core dumped), see this issue.

Owner
Corentin Jemine
Machine learning engineer at Resemble.AI
Corentin Jemine
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Search-Engine - πŸ“– AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
λ‰΄μŠ€ 도메인 μ§ˆμ˜μ‘λ‹΅ μ‹œμŠ€ν…œ (21-1ν•™κΈ° μ‘Έμ—… ν”„λ‘œμ νŠΈ)

λ‰΄μŠ€ 도메인 μ§ˆμ˜μ‘λ‹΅ μ‹œμŠ€ν…œ λ³Έ ν”„λ‘œμ νŠΈλŠ” λ‰΄μŠ€κΈ°μ‚¬μ— λŒ€ν•œ μ§ˆμ˜μ‘λ‹΅ μ„œλΉ„μŠ€ λ₯Ό μ œκ³΅ν•˜κΈ° μœ„ν•΄μ„œ μ§„ν–‰ν•œ ν”„λ‘œμ νŠΈμž…λ‹ˆλ‹€. μ•½ 3κ°œμ›”κ°„ ( 21. 03 ~ 21. 05 ) μ§„ν–‰ν•˜μ˜€μœΌλ©° Transformer 아킀텍쳐 기반의 Encoderλ₯Ό μ‚¬μš©ν•˜μ—¬ ν•œκ΅­μ–΄ μ§ˆμ˜μ‘λ‹΅ λ°μ΄ν„°μ…‹μœΌλ‘œ

TaegyeongEo 4 Jul 08, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details πŸ‘‹ List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023