Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

Overview

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization

This is an official implementation in PyTorch of AFSD. Our paper is available at https://arxiv.org/abs/2103.13137

Updates

  • (May, 2021) We released AFSD training and inference code for THUMOS14 dataset.
  • (February, 2021) AFSD is accepted by CVPR2021.

Abstract

Temporal action localization is an important yet challenging task in video understanding. Typically, such a task aims at inferring both the action category and localization of the start and end frame for each action instance in a long, untrimmed video. While most current models achieve good results by using pre-defined anchors and numerous actionness, such methods could be bothered with both large number of outputs and heavy tuning of locations and sizes corresponding to different anchors. Instead, anchor-free methods is lighter, getting rid of redundant hyper-parameters, but gains few attention. In this paper, we propose the first purely anchor-free temporal localization method, which is both efficient and effective. Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module to gather more valuable boundary features for each proposal with a novel boundary pooling, and (iii) several consistency constraints to make sure our model can find the accurate boundary given arbitrary proposals. Extensive experiments show that our method beats all anchor-based and actionness-guided methods with a remarkable margin on THUMOS14, achieving state-of-the-art results, and comparable ones on ActivityNet v1.3.

Summary

  • First purely anchor-free framework for temporal action detection task.
  • Fully end-to-end method using frames as input rather then features.
  • Saliency-based refinement module to gather more valuable boundary features.
  • Boundary consistency learning to make sure our model can find the accurate boundary.

Performance

Getting Started

Environment

  • Python 3.7
  • PyTorch == 1.4.0 (Please make sure your pytorch version is 1.4)
  • NVIDIA GPU

Setup

pip3 install -r requirements.txt
python3 setup.py develop

Data Preparation

  • THUMOS14 RGB data:
  1. Download post-processed RGB npy data (13.7GB): [Weiyun]
  2. Unzip the RGB npy data to ./datasets/thumos14/validation_npy/ and ./datasets/thumos14/test_npy/
  • THUMOS14 flow data:
  1. Because it costs more time to generate flow data for THUMOS14, to make easy to run flow model, we provide the post-processed flow data in Google Drive and Weiyun (3.4GB): [Google Drive], [Weiyun]
  2. Unzip the flow npy data to ./datasets/thumos14/validation_flow_npy/ and ./datasets/thumos14/test_flow_npy/

If you want to generate npy data by yourself, please refer to the following guidelines:

  • RGB data generation manually:
  1. To construct THUMOS14 RGB npy inputs, please download the THUMOS14 training and testing videos.
    Training videos: https://storage.googleapis.com/thumos14_files/TH14_validation_set_mp4.zip
    Testing videos: https://storage.googleapis.com/thumos14_files/TH14_Test_set_mp4.zip
    (unzip password is THUMOS14_REGISTERED)
  2. Move the training videos to ./datasets/thumos14/validation/ and the testing videos to ./datasets/thumos14/test/
  3. Run the data processing script: python3 AFSD/common/video2npy.py
  • Flow data generation manually:
  1. If you should generate flow data manually, firstly install the denseflow.
  2. Prepare the post-processed RGB data.
  3. Check and run the script: python3 AFSD/common/gen_denseflow_npy.py

Inference

We provide the pretrained models contain I3D backbone model and final RGB and flow models for THUMOS14 dataset: [Google Drive], [Weiyun]

# run RGB model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --checkpoint_path=models/thumos14/checkpoint-15.ckpt --output_json=thumos14_rgb.json

# run flow model
python3 AFSD/thumos14/test.py configs/thumos14_flow.yaml --checkpoint_path=models/thumos14_flow/checkpoint-16.ckpt --output_json=thumos14_flow.json

# run fusion (RGB + flow) model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --fusion --output_json=thumos14_fusion.json

Evaluation

The output json results of pretrained model can be downloaded from: [Google Drive], [Weiyun]

# evaluate THUMOS14 fusion result as example
python3 eval.py output/thumos14_fusion.json

mAP at tIoU 0.3 is 0.6728296149479254
mAP at tIoU 0.4 is 0.6242590551201842
mAP at tIoU 0.5 is 0.5546668739091394
mAP at tIoU 0.6 is 0.4374840824921885
mAP at tIoU 0.7 is 0.3110112542745055

Training

# train the RGB model
python3 AFSD/thumos14/train.py configs/thumos14.yaml --lw=10 --cw=1 --piou=0.5

# train the flow model
python3 AFSD/thumos14/train.py configs/thumos14_flow.yaml --lw=10 --cw=1 --piou=0.5

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{lin2021afsd,
  title={Learning Salient Boundary Feature for Anchor-free Temporal Action Localization},
  author={Chuming Lin*, Chengming Xu*, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, Yanwei Fu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tencent YouTu Research
Tencent YouTu Research
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.

doc2text doc2text extracts higher quality text by fixing common scan errors Developing text corpora can be a massive pain in the butt. Much of the tex

Joe Sutherland 1.3k Jan 04, 2023
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
A small C++ implementation of LSTM networks, focused on OCR.

clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco

Tom 794 Dec 30, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022