Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Overview

Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Requirements

To install requirements:

pip install -r requirements.txt

Training

To train the model(s) in the paper, run the following commands depending on the experiment:

For the MNIST experiment:
python ./mnist/clm_train.py --folder 
   
     --nmodel 
    
      --alpha 
     
       --delta 
      
        --pre 
       
         --pref 
        
          --epochs 
         
           --prse 
          
            --lr 
           
             --adv 
             For the CIFAR-10 experiment: python ./cifar-10/clm_train.py --folder 
             
               --nmodel 
              
                --alpha 
               
                 --delta 
                
                  --pre 
                 
                   --pref 
                  
                    --epochs 
                   
                     --prse 
                    
                      --lr 
                     
                       --adv 
                     
                    
                   
                  
                 
                
               
              
             
             
           
          
         
        
       
      
     
    
   

Evaluation

To evaluate the models against adversarial attacks, run the following commands depending on the experiment:

For the MNIST experiment:
python ./mnist/mra.py --attack 
   
     --folder 
    
      --nmodel 
     
       --epsilon 
      
        --testid 
       
         --batch 
        
          For the CIFAR-10 experiment: python ./cifar-10/attack.py --attack 
         
           --folder 
          
            --nmodel 
           
             --epsilon 
            
              --testid 
             
               --batch 
              
                The following is the list of attacks you can test against: - fgsm: Fast Gradient Sign Method attack - pgd: Projected Gradient Descent attack - Linf - auto: AutoAttack - mifgsm: MI-FGSM attack. 
              
             
            
           
          
         
        
       
      
     
    
   

Pre-trained Models

Pretrained models are included in the folders of mnist and cifar-10.

Since GitHub has a limit of the size of uploaded files, you can download the pretrained models through this link: https://drive.google.com/drive/folders/1Dkupi4bObIKofjKZOwOG0owsBFwfwo_5?usp=sharing

├── LICENSE
├── README.md
├── __init__.py
├── cifar-10
│   ├── clm10-a0.5d0.1-epochs150-prse10 
   
    
│   ├── clm_adv4-a0.1d0.05-epochs150-prse10 
    
     
│   ├── clm_train.py
│   ├── mra.py
│   ├── ulm10 
     
      
│   └── ulm_adv4 
      
       
├── mnist
│   ├── clm10-a0.1d0.1-epochs5-prse10 
       
         │   ├── clm_adv4-a0.01d0.005-epochs5-prse1 
        
          │   ├── clm_train.py │   ├── mra.py │   ├── ulm10 
         
           │   └── ulm_adv4 
          
            ├── models │   ├── lenet5.py │   └── resnet.py └── requirements.txt 
          
         
        
       
      
     
    
   

Contributing

MIT License

Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022