Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Overview

Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Requirements

To install requirements:

pip install -r requirements.txt

Training

To train the model(s) in the paper, run the following commands depending on the experiment:

For the MNIST experiment:
python ./mnist/clm_train.py --folder 
   
     --nmodel 
    
      --alpha 
     
       --delta 
      
        --pre 
       
         --pref 
        
          --epochs 
         
           --prse 
          
            --lr 
           
             --adv 
             For the CIFAR-10 experiment: python ./cifar-10/clm_train.py --folder 
             
               --nmodel 
              
                --alpha 
               
                 --delta 
                
                  --pre 
                 
                   --pref 
                  
                    --epochs 
                   
                     --prse 
                    
                      --lr 
                     
                       --adv 
                     
                    
                   
                  
                 
                
               
              
             
             
           
          
         
        
       
      
     
    
   

Evaluation

To evaluate the models against adversarial attacks, run the following commands depending on the experiment:

For the MNIST experiment:
python ./mnist/mra.py --attack 
   
     --folder 
    
      --nmodel 
     
       --epsilon 
      
        --testid 
       
         --batch 
        
          For the CIFAR-10 experiment: python ./cifar-10/attack.py --attack 
         
           --folder 
          
            --nmodel 
           
             --epsilon 
            
              --testid 
             
               --batch 
              
                The following is the list of attacks you can test against: - fgsm: Fast Gradient Sign Method attack - pgd: Projected Gradient Descent attack - Linf - auto: AutoAttack - mifgsm: MI-FGSM attack. 
              
             
            
           
          
         
        
       
      
     
    
   

Pre-trained Models

Pretrained models are included in the folders of mnist and cifar-10.

Since GitHub has a limit of the size of uploaded files, you can download the pretrained models through this link: https://drive.google.com/drive/folders/1Dkupi4bObIKofjKZOwOG0owsBFwfwo_5?usp=sharing

├── LICENSE
├── README.md
├── __init__.py
├── cifar-10
│   ├── clm10-a0.5d0.1-epochs150-prse10 
   
    
│   ├── clm_adv4-a0.1d0.05-epochs150-prse10 
    
     
│   ├── clm_train.py
│   ├── mra.py
│   ├── ulm10 
     
      
│   └── ulm_adv4 
      
       
├── mnist
│   ├── clm10-a0.1d0.1-epochs5-prse10 
       
         │   ├── clm_adv4-a0.01d0.005-epochs5-prse1 
        
          │   ├── clm_train.py │   ├── mra.py │   ├── ulm10 
         
           │   └── ulm_adv4 
          
            ├── models │   ├── lenet5.py │   └── resnet.py └── requirements.txt 
          
         
        
       
      
     
    
   

Contributing

MIT License

QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022