[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Overview

CPT: Efficient Deep Neural Network Training via Cyclic Precision

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

Accepted at ICLR 2021 (Spotlight) [Paper Link].

Overview

Low-precision deep neural network (DNN) training has gained tremendous attention as reducing precision is one of the most effective knobs for boosting DNNs’ training time/energy efficiency. In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs’ precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training. Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the precision between two boundary values to balance the coarse-grained exploration of low precision and fine-grained optimization of high precision. Through experiments and visualization we show that CPT helps to (1) converge to a wider minima with a lower generalization error and (2) reduce training variance, which opens up a new design knob for simultaneously improving the optimization and efficiency of DNN training.

Experimental Results

We evaluate CPT on eleven models & five datasets (i.e., ResNet-38/74/110/152/164/MobileNetV2 on CIFAR-10/100, ResNet-18/34/50 on ImageNet, Transformer on WikiText-103, LSTM on PTB). Please refer to our paper for more results.

Results on CIFAR-100

  • Test accuracy vs. training computational cost

  • Loss landscape visualization

Results on ImageNet

  • Accuracy - training efficiency trade-off

  • Boosting optimality

Results on WikiText-103 and PTB

Code Usage

cpt_cifar and cpt_imagenet are the codes customized for CIFAR-10/100 and ImageNet, respectively, with a similar code structure.

Prerequisites

See env.yml for the complete conda environment. Create a new conda environment:

conda env create -f env.yml
conda activate pytorch

Training on CIFAR-10/100 with CPT

In addition to the commonly considered args, e.g., the target network, dataset, and data path via --arch, --dataset, and --datadir, respectively, you also need to: (1) enable cyclic precision training via --is_cyclic_precision; (2) specify the precision bounds for both forward (weights and activations) and backward (gradients and errors) with --cyclic_num_bits_schedule and --cyclic_num_grad_bits_schedule, respectively (note that in CPT, we adopt a constant precision during backward for more stable training process as analyzed in our appendix); (3) specify the number of cyclic periods via --num_cyclic_period which can be set as 32 in all experiments and more ablation studies can be found in Sec. 4.3 of our paper.

  • Example: Training ResNet-74 on CIFAR-100 with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_cifar
python train.py --save_folder ./logs --arch cifar100_resnet_74 --workers 4 --dataset cifar100 --datadir path-to-cifar100 --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32

We also integrate SWA in our code although it is not used in the reported results of our paper.

Training on ImageNet with CPT

The args for ImageNet experiments are similar with the ones on CIFAR-10/100.

  • Example: Training ResNet-34 on ImageNet with CPT (3~8-bit forward, 8-bit backward, and a cyclic periods of 32).
cd cpt_imagenet
python train.py --save_folder ./logs --arch resnet34 --warm_up --datadir PATH_TO_IMAGENET --is_cyclic_precision --cyclic_num_bits_schedule 3 8 --cyclic_num_grad_bits_schedule 8 8 --num_cyclic_period 32 --automatic_resume

Citation

@article{fu2021cpt,
  title={CPT: Efficient Deep Neural Network Training via Cyclic Precision},
  author={Fu, Yonggan and Guo, Han and Li, Meng and Yang, Xin and Ding, Yining and Chandra, Vikas and Lin, Yingyan},
  journal={arXiv preprint arXiv:2101.09868},
  year={2021}
}

Our Related Work

Please also check our work on how to fractionally squeeze out more training cost savings from the most redundant bit level, progressively along the training trajectory and dynamically per input:

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrishnan, Zhangyang Wang, Yingyan Lin. "FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training". NeurIPS, 2020. [Paper Link] [Code]

Owner
Efficient and Intelligent Computing Lab
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022