Synthesizing and manipulating 2048x1024 images with conditional GANs

Overview





pix2pixHD

Project | Youtube | Paper

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps.

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1
1NVIDIA Corporation, 2UC Berkeley
In CVPR 2018.

Image-to-image translation at 2k/1k resolution

  • Our label-to-streetview results

- Interactive editing results

- Additional streetview results

  • Label-to-face and interactive editing results

  • Our editing interface

Prerequisites

  • Linux or macOS
  • Python 2 or 3
  • NVIDIA GPU (11G memory or larger) + CUDA cuDNN

Getting Started

Installation

pip install dominate
  • Clone this repo:
git clone https://github.com/NVIDIA/pix2pixHD
cd pix2pixHD

Testing

  • A few example Cityscapes test images are included in the datasets folder.
  • Please download the pre-trained Cityscapes model from here (google drive link), and put it under ./checkpoints/label2city_1024p/
  • Test the model (bash ./scripts/test_1024p.sh):
#!./scripts/test_1024p.sh
python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none

The test results will be saved to a html file here: ./results/label2city_1024p/test_latest/index.html.

More example scripts can be found in the scripts directory.

Dataset

  • We use the Cityscapes dataset. To train a model on the full dataset, please download it from the official website (registration required). After downloading, please put it under the datasets folder in the same way the example images are provided.

Training

  • Train a model at 1024 x 512 resolution (bash ./scripts/train_512p.sh):
#!./scripts/train_512p.sh
python train.py --name label2city_512p
  • To view training results, please checkout intermediate results in ./checkpoints/label2city_512p/web/index.html. If you have tensorflow installed, you can see tensorboard logs in ./checkpoints/label2city_512p/logs by adding --tf_log to the training scripts.

Multi-GPU training

  • Train a model using multiple GPUs (bash ./scripts/train_512p_multigpu.sh):
#!./scripts/train_512p_multigpu.sh
python train.py --name label2city_512p --batchSize 8 --gpu_ids 0,1,2,3,4,5,6,7

Note: this is not tested and we trained our model using single GPU only. Please use at your own discretion.

Training with Automatic Mixed Precision (AMP) for faster speed

  • To train with mixed precision support, please first install apex from: https://github.com/NVIDIA/apex
  • You can then train the model by adding --fp16. For example,
#!./scripts/train_512p_fp16.sh
python -m torch.distributed.launch train.py --name label2city_512p --fp16

In our test case, it trains about 80% faster with AMP on a Volta machine.

Training at full resolution

  • To train the images at full resolution (2048 x 1024) requires a GPU with 24G memory (bash ./scripts/train_1024p_24G.sh), or 16G memory if using mixed precision (AMP).
  • If only GPUs with 12G memory are available, please use the 12G script (bash ./scripts/train_1024p_12G.sh), which will crop the images during training. Performance is not guaranteed using this script.

Training with your own dataset

  • If you want to train with your own dataset, please generate label maps which are one-channel whose pixel values correspond to the object labels (i.e. 0,1,...,N-1, where N is the number of labels). This is because we need to generate one-hot vectors from the label maps. Please also specity --label_nc N during both training and testing.
  • If your input is not a label map, please just specify --label_nc 0 which will directly use the RGB colors as input. The folders should then be named train_A, train_B instead of train_label, train_img, where the goal is to translate images from A to B.
  • If you don't have instance maps or don't want to use them, please specify --no_instance.
  • The default setting for preprocessing is scale_width, which will scale the width of all training images to opt.loadSize (1024) while keeping the aspect ratio. If you want a different setting, please change it by using the --resize_or_crop option. For example, scale_width_and_crop first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize). crop skips the resizing step and only performs random cropping. If you don't want any preprocessing, please specify none, which will do nothing other than making sure the image is divisible by 32.

More Training/Test Details

  • Flags: see options/train_options.py and options/base_options.py for all the training flags; see options/test_options.py and options/base_options.py for all the test flags.
  • Instance map: we take in both label maps and instance maps as input. If you don't want to use instance maps, please specify the flag --no_instance.

Citation

If you find this useful for your research, please use the following.

@inproceedings{wang2018pix2pixHD,
  title={High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs},
  author={Ting-Chun Wang and Ming-Yu Liu and Jun-Yan Zhu and Andrew Tao and Jan Kautz and Bryan Catanzaro},  
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}

Acknowledgments

This code borrows heavily from pytorch-CycleGAN-and-pix2pix.

Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022