HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Related tags

Deep Learninghalo
Overview

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Oral Presentation, 3DV 2021

Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar Hilliges, Siyu Tang
ETH Zurich

halo_teaser

report report

Video: Youtube

Abstract

We present Hand ArticuLated Occupancy (HALO), a novel representation of articulated hands that bridges the advantages of 3D keypoints and neural implicit surfaces and can be used in end-to-end trainable architectures. Unlike existing statistical parametric hand models (e.g.~MANO), HALO directly leverages the 3D joint skeleton as input and produces a neural occupancy volume representing the posed hand surface. The key benefits of HALO are (1) it is driven by 3D keypoints, which have benefits in terms of accuracy and are easier to learn for neural networks than the latent hand-model parameters; (2) it provides a differentiable volumetric occupancy representation of the posed hand; (3) it can be trained end-to-end, allowing the formulation of losses on the hand surface that benefit the learning of 3D keypoints. We demonstrate the applicability of HALO to the task of conditional generation of hands that grasp 3D objects. The differentiable nature of HALO is shown to improve the quality of the synthesized hands both in terms of physical plausibility and user preference.

Updates

  • December 1, 2021: Initial release for version 0.01 with demo.

Running the code

Dependencies

The easiest way to run the code is to use conda. The code is tested on Ubuntu 18.04.

Implicit surface from keypoints

halo_hand To try a demo which produces an implicit hand surface from the input keypoints, run:

cd halo
python demo_kps_to_hand.py

The demo will run the marching cubes algorithm and render each image in the animation above sequentially. The output images are in the output folder. The provided sample sequence are interpolations beetween 17 randomly sampled poses from the unseen HO3D dataset .

Dataset

  • The HALO-base model is trained using Youtube3D hand dataset. We only use the hand mesh ground truth without the images and videos. We provide the preprocessed data in the evaluation section.
  • The HALO-VAE model is trained and test on the GRAB dataset

Evaluation

HALO base model (implicit hand model)

To generate the mesh given the 3D keypoints and precomputed transformation matrices, run:

cd halo_base
python generate.py CONFIG_FILE.yaml

To evaluate the hand surface, run:

python eval_meshes.py

We provide the preprocessed test set of the Youtube3D here. In addition, you can also find the produced meshes from our keypoint model on the same test set here.

HALO-VAE

To generate grasps given 3D object mesh, run:

python generate.py HALO_VAE_CONFIG_FILE.ymal --test_data DATA_PATH --inference

The evaluation code for contact/interpenetration and cluster analysis can be found in halo/evaluate.py and halo/evaluate_cluster.py accordningly. The intersection test demo is in halo/utils/interscetion.py

Training

HALO base model (implicit hand model)

Data Preprocessing

Each data point consists of 3D keypoints, transformation matrices, and a hand surface. To speed up the training, all transformation matrices are precomputed, either by out Canonicalization Layer or from the MANO. Please check halo/halo_base/prepare_data_from_mano_param_keypoints.py for details. We use the surface point sampling and occupancy computation method from the Occupancy Networks

Run

To train HALO base model (implicit functions), run:

cd halo_base
python train.py

HALO-VAE

To train HALO-VAE, run:

cd halo
python train.py

HALO_VAE requires a HALO base model trained using the transformation matrices from the Canonicalization Layer. The weights of the base model are not updated during the VAE training.

BibTex

@inproceedings{karunratanakul2021halo,
  title={A Skeleton-Driven Neural Occupancy Representation for Articulated Hands},
  author={Karunratanakul, Korrawe and, Spurr, Adrian and Fan, Zicong and Hilliges, Otmar and Tang, Siyu},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

References

Some code in our repo uses snippets of the following repo:

Please consider citing them if you found the code useful.

Acknowledgement

We sincerely acknowledge Shaofei Wang and Marko Mihajlovic for the insightful discussionsand helps with the baselines.

Owner
Korrawe Karunratanakul
Korrawe Karunratanakul
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022