Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Overview

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

License: MIT PWC

This repository is the pytorch implementation of our paper:

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation
Muhammad Zubair Irshad, Chih-Yao Ma, Zsolt Kira
International Conference on Robotics and Automation (ICRA), 2021

[Project Page] [arXiv] [GitHub]

Installation

Clone the current repository and required submodules:

git clone https://github.com/GT-RIPL/robo-vln
cd robo-vln
  
export robovln_rootdir=$PWD
    
git submodule init 
git submodule update

Habitat and Other Dependencies

Install robo-vln dependencies as follows:

conda create -n habitat python=3.6 cmake=3.14.0
cd $robovln_rootdir
python -m pip install -r requirements.txt

We use modified versions of Habitat-Sim and Habitat-API to support continuous control/action-spaces in Habitat Simulator. The details regarding continuous action spaces and converting discrete VLN dataset into continuous control formulation can be found in our paper. The specific commits of our modified Habitat-Sim and Habitat-API versions are mentioned below.

# installs both habitat-api and habitat_baselines
cd $robovln_rootdir/environments/habitat-lab
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all
	
# Install habitat-sim
cd $robovln_rootdir/environments/habitat-sim
python setup.py install --headless --with-cuda

Data

Similar to Habitat-API, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project.

Matterport3D

We utilize Matterport3D (MP3D) photo-realistic scene reconstructions to train and evaluate our agent. A total of 90 Matterport3D scenes are used for robo-vln. Here is the official Matterport3D Dataset download link and associated instructions: project webpage. To download the scenes needed for robo-vln, run the following commands:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb.

Dataset

The Robo-VLN dataset is a continuous control formualtion of the VLN-CE dataset by Krantz et al ported over from Room-to-Room (R2R) dataset created by Anderson et al. The details regarding converting discrete VLN dataset into continuous control formulation can be found in our paper.

Dataset Path to extract Size
robo_vln_v1.zip data/datasets/robo_vln_v1 76.9 MB

Robo-VLN Dataset

The dataset robo_vln_v1 contains the train, val_seen, and val_unseen splits.

  • train: 7739 episodes
  • val_seen: 570 episodes
  • val_unseen: 1224 episodes

Format of {split}.json.gz

{
    'episodes' = [
        {
            'episode_id': 4991,
            'trajectory_id': 3279,
            'scene_id': 'mp3d/JeFG25nYj2p/JeFG25nYj2p.glb',
            'instruction': {
                'instruction_text': 'Walk past the striped area rug...',
                'instruction_tokens': [2384, 1589, 2202, 2118, 133, 1856, 9]
            },
            'start_position': [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            'start_rotation': [0, 0.3332950713608026, 0, 0.9428225683587541],
            'goals': [
                {
                    'position': [3.360340118408203, 0.09358400106430054, 3.07817006111145], 
                    'radius': 3.0
                }
            ],
            'reference_path': [
                [10.257800102233887, 0.09358400106430054, -2.379739999771118], 
                [9.434900283813477, 0.09358400106430054, -1.3061100244522095]
                ...
                [3.360340118408203, 0.09358400106430054, 3.07817006111145],
            ],
            'info': {'geodesic_distance': 9.65537166595459},
        },
        ...
    ],
    'instruction_vocab': [
        'word_list': [..., 'orchids', 'order', 'orient', ...],
        'word2idx_dict': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'itos': [..., 'orchids', 'order', 'orient', ...],
        'stoi': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'num_vocab': 2504,
        'UNK_INDEX': 1,
        'PAD_INDEX': 0,
    ]
}
  • Format of {split}_gt.json.gz
{
    '4991': {
        'actions': [
          ...
          [-0.999969482421875, 1.0],
          [-0.9999847412109375, 0.15731772780418396],
          ...
          ],
        'forward_steps': 325,
        'locations': [
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            ...
            [-12.644463539123535, 0.1518409252166748, 4.2241311073303220]
        ]
    }
    ...
}

Depth Encoder Weights

Similar to VLN-CE, our learning-based models utilizes a depth encoder pretained on a large-scale point-goal navigation task i.e. DDPPO. We utilize depth pretraining by using the DDPPO features from the ResNet50 from the original paper. The pretrained network can be downloaded here. Extract the contents of ddppo-models.zip to data/ddppo-models/{model}.pth.

Training and reproducing results

We use run.py script to train and evaluate all of our baseline models. Use run.py along with a configuration file and a run type (either train or eval) to train or evaluate:

python run.py --exp-config path/to/config.yaml --run-type {train | eval}

For lists of modifiable configuration options, see the default task config and experiment config files.

Evaluating Models

All models can be evaluated using python run.py --exp-config path/to/config.yaml --run-type eval. The relevant config entries for evaluation are:

EVAL_CKPT_PATH_DIR  # path to a checkpoint or a directory of checkpoints
EVAL.USE_CKPT_CONFIG  # if True, use the config saved in the checkpoint file
EVAL.SPLIT  # which dataset split to evaluate on (typically val_seen or val_unseen)
EVAL.EPISODE_COUNT  # how many episodes to evaluate

If EVAL.EPISODE_COUNT is equal to or greater than the number of episodes in the evaluation dataset, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, one checkpoint will be evaluated at a time. If there are no more checkpoints to evaluate, the script will poll the directory every few seconds looking for a new one. Each config file listed in the next section is capable of both training and evaluating the model it is accompanied by.

Off-line Data Buffer

All our models require an off-line data buffer for training. To collect the continuous control dataset for both train and val_seen splits, run the following commands before training (Please note that it would take some time on a single GPU to store data. Please also make sure to dedicate around ~1.5 TB of hard-disk space for data collection):

Collect data buffer for train split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type train

Collect data buffer for val_seen split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_val.yaml --run-type train 

CUDA

We use 2 GPUs to train our Hierarchical Model hierarchical_cma.yaml. To train the hierarchical model, dedicate 2 GPUs for training as follows:

CUDA_VISIBLE_DEVICES=0,1 python run.py --exp-config robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml --run-type train

Models/Results From the Paper

Model val_seen SPL val_unseen SPL Config
Seq2Seq 0.34 0.30 seq2seq_robo.yaml
PM 0.27 0.24 seq2seq_robo_pm.yaml
CMA 0.25 0.25 cma.yaml
HCM (Ours) 0.43 0.40 hierarchical_cma.yaml
Legend
Seq2Seq Sequence-to-Sequence. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
PM Progress monitor
CMA Cross-Modal Attention model. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
HCM Hierarchical Cross-Modal Agent Module (The proposed hierarchical VLN model from our paper).

Pretrained Model

We provide pretrained model for our best Hierarchical Cross-Modal Agent (HCM). Pre-trained Model can be downloaded as follows:

Pre-trained Model Size
HCM_Agent.pth 691 MB

Citation

If you find this repository useful, please cite our paper:

@inproceedings{irshad2021hierarchical,
title={Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation},
author={Muhammad Zubair Irshad and Chih-Yao Ma and Zsolt Kira},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2021},
url={https://arxiv.org/abs/2104.10674}
}

Acknowledgments

  • This code is built upon the implementation from VLN-CE
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021