Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Overview

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

License: MIT PWC

This repository is the pytorch implementation of our paper:

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation
Muhammad Zubair Irshad, Chih-Yao Ma, Zsolt Kira
International Conference on Robotics and Automation (ICRA), 2021

[Project Page] [arXiv] [GitHub]

Installation

Clone the current repository and required submodules:

git clone https://github.com/GT-RIPL/robo-vln
cd robo-vln
  
export robovln_rootdir=$PWD
    
git submodule init 
git submodule update

Habitat and Other Dependencies

Install robo-vln dependencies as follows:

conda create -n habitat python=3.6 cmake=3.14.0
cd $robovln_rootdir
python -m pip install -r requirements.txt

We use modified versions of Habitat-Sim and Habitat-API to support continuous control/action-spaces in Habitat Simulator. The details regarding continuous action spaces and converting discrete VLN dataset into continuous control formulation can be found in our paper. The specific commits of our modified Habitat-Sim and Habitat-API versions are mentioned below.

# installs both habitat-api and habitat_baselines
cd $robovln_rootdir/environments/habitat-lab
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all
	
# Install habitat-sim
cd $robovln_rootdir/environments/habitat-sim
python setup.py install --headless --with-cuda

Data

Similar to Habitat-API, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project.

Matterport3D

We utilize Matterport3D (MP3D) photo-realistic scene reconstructions to train and evaluate our agent. A total of 90 Matterport3D scenes are used for robo-vln. Here is the official Matterport3D Dataset download link and associated instructions: project webpage. To download the scenes needed for robo-vln, run the following commands:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb.

Dataset

The Robo-VLN dataset is a continuous control formualtion of the VLN-CE dataset by Krantz et al ported over from Room-to-Room (R2R) dataset created by Anderson et al. The details regarding converting discrete VLN dataset into continuous control formulation can be found in our paper.

Dataset Path to extract Size
robo_vln_v1.zip data/datasets/robo_vln_v1 76.9 MB

Robo-VLN Dataset

The dataset robo_vln_v1 contains the train, val_seen, and val_unseen splits.

  • train: 7739 episodes
  • val_seen: 570 episodes
  • val_unseen: 1224 episodes

Format of {split}.json.gz

{
    'episodes' = [
        {
            'episode_id': 4991,
            'trajectory_id': 3279,
            'scene_id': 'mp3d/JeFG25nYj2p/JeFG25nYj2p.glb',
            'instruction': {
                'instruction_text': 'Walk past the striped area rug...',
                'instruction_tokens': [2384, 1589, 2202, 2118, 133, 1856, 9]
            },
            'start_position': [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            'start_rotation': [0, 0.3332950713608026, 0, 0.9428225683587541],
            'goals': [
                {
                    'position': [3.360340118408203, 0.09358400106430054, 3.07817006111145], 
                    'radius': 3.0
                }
            ],
            'reference_path': [
                [10.257800102233887, 0.09358400106430054, -2.379739999771118], 
                [9.434900283813477, 0.09358400106430054, -1.3061100244522095]
                ...
                [3.360340118408203, 0.09358400106430054, 3.07817006111145],
            ],
            'info': {'geodesic_distance': 9.65537166595459},
        },
        ...
    ],
    'instruction_vocab': [
        'word_list': [..., 'orchids', 'order', 'orient', ...],
        'word2idx_dict': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'itos': [..., 'orchids', 'order', 'orient', ...],
        'stoi': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'num_vocab': 2504,
        'UNK_INDEX': 1,
        'PAD_INDEX': 0,
    ]
}
  • Format of {split}_gt.json.gz
{
    '4991': {
        'actions': [
          ...
          [-0.999969482421875, 1.0],
          [-0.9999847412109375, 0.15731772780418396],
          ...
          ],
        'forward_steps': 325,
        'locations': [
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            ...
            [-12.644463539123535, 0.1518409252166748, 4.2241311073303220]
        ]
    }
    ...
}

Depth Encoder Weights

Similar to VLN-CE, our learning-based models utilizes a depth encoder pretained on a large-scale point-goal navigation task i.e. DDPPO. We utilize depth pretraining by using the DDPPO features from the ResNet50 from the original paper. The pretrained network can be downloaded here. Extract the contents of ddppo-models.zip to data/ddppo-models/{model}.pth.

Training and reproducing results

We use run.py script to train and evaluate all of our baseline models. Use run.py along with a configuration file and a run type (either train or eval) to train or evaluate:

python run.py --exp-config path/to/config.yaml --run-type {train | eval}

For lists of modifiable configuration options, see the default task config and experiment config files.

Evaluating Models

All models can be evaluated using python run.py --exp-config path/to/config.yaml --run-type eval. The relevant config entries for evaluation are:

EVAL_CKPT_PATH_DIR  # path to a checkpoint or a directory of checkpoints
EVAL.USE_CKPT_CONFIG  # if True, use the config saved in the checkpoint file
EVAL.SPLIT  # which dataset split to evaluate on (typically val_seen or val_unseen)
EVAL.EPISODE_COUNT  # how many episodes to evaluate

If EVAL.EPISODE_COUNT is equal to or greater than the number of episodes in the evaluation dataset, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, one checkpoint will be evaluated at a time. If there are no more checkpoints to evaluate, the script will poll the directory every few seconds looking for a new one. Each config file listed in the next section is capable of both training and evaluating the model it is accompanied by.

Off-line Data Buffer

All our models require an off-line data buffer for training. To collect the continuous control dataset for both train and val_seen splits, run the following commands before training (Please note that it would take some time on a single GPU to store data. Please also make sure to dedicate around ~1.5 TB of hard-disk space for data collection):

Collect data buffer for train split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type train

Collect data buffer for val_seen split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_val.yaml --run-type train 

CUDA

We use 2 GPUs to train our Hierarchical Model hierarchical_cma.yaml. To train the hierarchical model, dedicate 2 GPUs for training as follows:

CUDA_VISIBLE_DEVICES=0,1 python run.py --exp-config robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml --run-type train

Models/Results From the Paper

Model val_seen SPL val_unseen SPL Config
Seq2Seq 0.34 0.30 seq2seq_robo.yaml
PM 0.27 0.24 seq2seq_robo_pm.yaml
CMA 0.25 0.25 cma.yaml
HCM (Ours) 0.43 0.40 hierarchical_cma.yaml
Legend
Seq2Seq Sequence-to-Sequence. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
PM Progress monitor
CMA Cross-Modal Attention model. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
HCM Hierarchical Cross-Modal Agent Module (The proposed hierarchical VLN model from our paper).

Pretrained Model

We provide pretrained model for our best Hierarchical Cross-Modal Agent (HCM). Pre-trained Model can be downloaded as follows:

Pre-trained Model Size
HCM_Agent.pth 691 MB

Citation

If you find this repository useful, please cite our paper:

@inproceedings{irshad2021hierarchical,
title={Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation},
author={Muhammad Zubair Irshad and Chih-Yao Ma and Zsolt Kira},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2021},
url={https://arxiv.org/abs/2104.10674}
}

Acknowledgments

  • This code is built upon the implementation from VLN-CE
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022