Implementation of Sequence Generative Adversarial Nets with Policy Gradient

Related tags

Deep LearningSeqGAN
Overview

SeqGAN

Requirements:

  • Tensorflow r1.0.1
  • Python 2.7
  • CUDA 7.5+ (For GPU)

Introduction

Apply Generative Adversarial Nets to generating sequences of discrete tokens.

The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G. Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back to the intermediate action value via Monte Carlo search.

The research paper SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient has been accepted at the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

We provide example codes to repeat the synthetic data experiments with oracle evaluation mechanisms. To run the experiment with default parameters:

$ python sequence_gan.py

You can change the all the parameters in sequence_gan.py.

The experiment has two stages. In the first stage, use the positive data provided by the oracle model and Maximum Likelihood Estimation to perform supervise learning. In the second stage, use adversarial training to improve the generator.

After running the experiments, you could get the negative log-likelihodd performance saved in save/experiment-log.txt like:

pre-training...
epoch:	0	nll:	10.1716
epoch:	5	nll:	9.42939
epoch:	10	nll:	9.2388
epoch:	15	nll:	9.11899
epoch:	20	nll:	9.13099
epoch:	25	nll:	9.14474
epoch:	30	nll:	9.12539
epoch:	35	nll:	9.13982
epoch:	40	nll:	9.135
epoch:	45	nll:	9.13081
epoch:	50	nll:	9.10678
epoch:	55	nll:	9.10694
epoch:	60	nll:	9.10349
epoch:	65	nll:	9.10403
epoch:	70	nll:	9.07613
epoch:	75	nll:	9.091
epoch:	80	nll:	9.08909
epoch:	85	nll:	9.0807
epoch:	90	nll:	9.08434
epoch:	95	nll:	9.08936
epoch:	100	nll:	9.07443
epoch:	105	nll:	9.08305
epoch:	110	nll:	9.06973
epoch:	115	nll:	9.07058
adversarial training...
epoch:	0	nll:	9.08457
epoch:	5	nll:	9.04511
epoch:	10	nll:	9.03079
epoch:	15	nll:	8.99239
epoch:	20	nll:	8.96401
epoch:	25	nll:	8.93864
epoch:	30	nll:	8.91642
epoch:	35	nll:	8.87761
epoch:	40	nll:	8.88582
epoch:	45	nll:	8.8592
epoch:	50	nll:	8.83388
epoch:	55	nll:	8.81342
epoch:	60	nll:	8.80247
epoch:	65	nll:	8.77778
epoch:	70	nll:	8.7567
epoch:	75	nll:	8.73002
epoch:	80	nll:	8.72488
epoch:	85	nll:	8.72233
epoch:	90	nll:	8.71473
epoch:	95	nll:	8.71163
epoch:	100	nll:	8.70113
epoch:	105	nll:	8.69879
epoch:	110	nll:	8.69208
epoch:	115	nll:	8.69291
epoch:	120	nll:	8.68371
epoch:	125	nll:	8.689
epoch:	130	nll:	8.68989
epoch:	135	nll:	8.68269
epoch:	140	nll:	8.68647
epoch:	145	nll:	8.68066
epoch:	150	nll:	8.6832

Note: this code is based on the previous work by ofirnachum. Many thanks to ofirnachum.

Owner
Lantao Yu
Ph.D. Student at Stanford CS Department
Lantao Yu
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022