Reliable probability face embeddings

Related tags

Deep LearningProbFace
Overview

ProbFace, arxiv

This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) method. The representation of each face will be an Guassian distribution parametrized by (mu, sigma), where mu is the original embedding and sigma is the learned uncertainty. Experiments show that ProbFace could

  • improve the robustness of PFE.
  • simplify the calculation of the multal likelihood score (MLS).
  • improve the recognition performance on the risk-controlled scenarios.

Usage

Preprocessing

Download the MS-Celeb-1M dataset from insightface or face.evoLVe.PyTorch and decode it using this code

Training

  1. Download the base model ResFace64 and unzip the files under log/resface64.

  2. Modify the configuration files under configfig/ folder.

  3. Start the training:

    python train.py configfig/resface64_msarcface.py
    Start Training
    name: resface64
    # epochs: 12
    epoch_size: 1000
    batch_size: 128
    
    Saving variables...
    Saving metagraph...
    Saving variables...
    [1][1] time: 4.19 a 0.8130 att_neg 2.7123 att_pos 0.9874 atte 1.8354 lr 0.0100 mls 0.6820 regu 0.1267 s_L2 0.0025 s_max 0.4467 s_min 0.2813
    [1][101] time: 37.72 a 0.8273 att_neg 2.9455 att_pos 1.0839 atte 1.8704 lr 0.0100 mls 0.6946 regu 0.1256 s_L2 0.0053 s_max 0.4935 s_min 0.2476
    [1][201] time: 38.06 a 0.8533 att_neg 2.9560 att_pos 1.1092 atte 1.9117 lr 0.0100 mls 0.7208 regu 0.1243 s_L2 0.0063 s_max 0.5041 s_min 0.2505
    [1][301] time: 38.82 a 0.7510 att_neg 2.9985 att_pos 1.0223 atte 1.7441 lr 0.0100 mls 0.6209 regu 0.1231 s_L2 0.0053 s_max 0.4552 s_min 0.2251
    [1][401] time: 37.95 a 0.8122 att_neg 2.9846 att_pos 1.0803 atte 1.8501 lr 0.0100 mls 0.6814 regu 0.1219 s_L2 0.0070 s_max 0.4964 s_min 0.2321
    [1][501] time: 38.42 a 0.7307 att_neg 3.0087 att_pos 1.0050 atte 1.8465 lr 0.0100 mls 0.6005 regu 0.1207 s_L2 0.0076 s_max 0.5249 s_min 0.2181
    [1][601] time: 37.69 a 0.7827 att_neg 3.0395 att_pos 1.0703 atte 1.8236 lr 0.0100 mls 0.6552 regu 0.1195 s_L2 0.0062 s_max 0.4952 s_min 0.2211
    [1][701] time: 37.36 a 0.7410 att_neg 2.9971 att_pos 1.0180 atte 1.8086 lr 0.0100 mls 0.6140 regu 0.1183 s_L2 0.0068 s_max 0.4955 s_min 0.2383
    [1][801] time: 37.27 a 0.6889 att_neg 3.0273 att_pos 0.9755 atte 1.7376 lr 0.0100 mls 0.5635 regu 0.1171 s_L2 0.0065 s_max 0.4773 s_min 0.2481
    [1][901] time: 37.34 a 0.7609 att_neg 2.9962 att_pos 1.0403 atte 1.8056 lr 0.0100 mls 0.6367 regu 0.1160 s_L2 0.0064 s_max 0.4861 s_min 0.2272
    Saving variables...
    --- cfp_fp ---
    testing verification..
    (14000, 96, 96, 3)
    # of images: 14000 Current image: 13952 Elapsed time: 00:00:12
    save /_feature.pkl
    sigma_sq (14000, 1)
    sigma_sq (14000, 1)
    sigma_sq [0.19821654 0.25770819 0.29024169 0.35030219 0.40342696 0.44539295
     0.56343746] percentile [0, 10, 30, 50, 70, 90, 100]
    risk_factor 0.0 risk_threshold 0.5634374618530273 keep_idxes 7000 / 7000 Cosine score acc 0.980429 threshold 0.182809
    risk_factor 0.1 risk_threshold 0.4627984762191772 keep_idxes 6301 / 7000 Cosine score acc 0.983336 threshold 0.201020
    risk_factor 0.2 risk_threshold 0.4453900158405304 keep_idxes 5603 / 7000 Cosine score acc 0.985007 threshold 0.203516
    risk_factor 0.3 risk_threshold 0.4327596127986908 keep_idxes 4904 / 7000 Cosine score acc 0.986134 threshold 0.207834
    

Testing

  • Single Image Comparison We use LFW dataset as an example for single image comparison. Make sure you have aligned LFW images using the previous commands. Then you can test it on the LFW dataset with the following command:
    run_eval.bat

Visualization of Uncertainty

Pre-trained Model

ResFace64

Method Download2 Download2
Base Mode Baidu Drive PW:v800 [Google Drive]TODO
MLS Only Baidu Drive PW:72tt [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:sx8a [Google Drive]TODO
ProbFace Baidu Drive PW:pr0m [Google Drive]TODO

ResFace64(0.5)

Method Download2 Download2
Base Mode Baidu Drive PW:zrkl [Google Drive]TODO
MLS Only Baidu Drive PW:et0e [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:glmf [Google Drive]TODO
ProbFace Baidu Drive PW:o4tn [Google Drive]TODO

Test Results:

Method LFW CFP-FF CALFW AgeDB30 CPLFW CFP-FP Vgg2FP Avg
Base Mode 99.80 99.80 95.93 97.93 92.53 98.04 94.92 96.99
MLS Only 99.80 99.76 95.87 97.35 93.01 98.29 95.26 97.05
MLS + L1 + Triplet 99.85 99.83 96.05 97.93 93.17 98.39 95.36 97.22
ProbFace 99.85 99.80 96.02 97.90 93.53 98.41 95.34 97.26

Acknowledgement

This repo is inspired by Probabilistic-Face-Embeddings

Reference

If you find this repo useful, please consider citing:

@misc{chen2021reliable,
    title={Reliable Probabilistic Face Embeddings in the Wild},
    author={Kai Chen and Qi Lv and Taihe Yi and Zhengming Yi},
    year={2021},
    eprint={2102.04075},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Kaen Chan
Kaen Chan
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022