Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Overview

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

This repository is the official PyTorch implementation of Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (arxiv, supp).

🚀 🚀 🚀 News:


Normalizing flows have recently demonstrated promising results for low-level vision tasks. For image super-resolution (SR), it learns to predict diverse photo-realistic high-resolution (HR) images from the low-resolution (LR) image rather than learning a deterministic mapping. For image rescaling, it achieves high accuracy by jointly modelling the downscaling and upscaling processes. While existing approaches employ specialized techniques for these two tasks, we set out to unify them in a single formulation. In this paper, we propose the hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling. More specifically, HCFlow learns a bijective mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously. In particular, the high-frequency component is conditional on the LR image in a hierarchical manner. To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training. Extensive experiments on general image SR, face image SR and image rescaling have demonstrated that the proposed HCFlow achieves state-of-the-art performance in terms of both quantitative metrics and visual quality.

         

Requirements

  • Python 3.7, PyTorch == 1.7.1
  • Requirements: opencv-python, lpips, natsort, etc.
  • Platforms: Ubuntu 16.04, cuda-11.0
cd HCFlow-master
pip install -r requirements.txt 

Quick Run (takes 1 Minute)

To run the code with one command (without preparing data), run this command:

cd codes
# face image SR
python test_HCFLow.py --opt options/test/test_SR_CelebA_8X_HCFlow.yml

# general image SR
python test_HCFLow.py --opt options/test/test_SR_DF2K_4X_HCFlow.yml

# image rescaling
python test_HCFLow.py --opt options/test/test_Rescaling_DF2K_4X_HCFlow.yml

Data Preparation

The framework of this project is based on MMSR and SRFlow. To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used SR datasets can be downloaded here. There are two ways for accerleration in data loading: First, one can use ./scripts/png2npy.py to generate .npy files and use data/GTLQnpy_dataset.py. Second, one can use .pklv4 dataset (recommended) and use data/LRHR_PKL_dataset.py. Please refer to SRFlow for more details. Prepared datasets can be downloaded here.

Training

To train HCFlow for general image SR/ face image SR/ image rescaling, run this command:

cd codes

# face image SR
python train_HCFLow.py --opt options/train/train_SR_CelebA_8X_HCFlow.yml

# general image SR
python train_HCFLow.py --opt options/train/train_SR_DF2K_4X_HCFlow.yml

# image rescaling
python train_HCFLow.py --opt options/train/train_Rescaling_DF2K_4X_HCFlow.yml

All trained models can be downloaded from here.

Testing

Please follow the Quick Run section. Just modify the dataset path in test_HCFlow_*.yml.

Results

We achieved state-of-the-art performance on general image SR, face image SR and image rescaling.

For more results, please refer to the paper and supp for details.

Citation

@inproceedings{liang21hcflow,
  title={Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling},
  author={Liang, Jingyun and Lugmayr, Andreas and Zhang, Kai and Danelljan, Martin and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on MMSR, SRFlow, IRN and Glow-pytorch. Please also follow their licenses. Thanks for their great works.

Comments
  • Testing without GT

    Testing without GT

    Is there a way to run the test without GT? I just want to infer the model. I found a mode called LQ which -I think- should only load the images in LR directory. But this mode gives me the error: assert real_crop * self.opt['scale'] * 2 > self.opt['kernel_size'] TypeError: '>' not supported between instances of 'int' and 'NoneType'

    in LQ_dataset.py", line 88

    solved ✅ 
    opened by AhmedHashish123 4
  • Add Docker environment & web demo

    Add Docker environment & web demo

    Hey @JingyunLiang !👋

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model! View it here: https://replicate.ai/jingyunliang/hcflow-sr, which currently supports Image Super-Resolution.

    Claim your page here so you can edit it, and we'll feature it on our website and tweet about it too.

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by chenxwh 2
  • The code implementation and the paper description seem different

    The code implementation and the paper description seem different

    Hi, your work is excellent, but there is one thing I don't understand.

    What is written in the paper is:

    "A diagonal covariance matrix with all diagonal elements close to zero"

    But the code implementation in HCFlowNet_SR_arch.py line 64 is: basic. Gaussian diag.logp (LR, - torch. Ones_ like(lr)*6, fake_ lr_ from_ hr)

    why use - torch. Ones_ like(lr)*6 as covariance matrix? This seems to be inconsistent with the description in the paper

    opened by xmyhhh 2
  • environment

    environment

    ImportError: /home/hbw/gcc-build-5.4.0/lib64/libstdc++.so.6: version `GLIBCXX_3.4.22' not found (required by /home/hbw/anaconda3/lib/python3.8/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-38-x86_64-linux-gnu.so)

    Is this error due to my GCC version being too low, and your version is? looking forward to your reply!

    opened by hbw945 2
  • Code versions of BRISQUE and NIQE used in paper

    Code versions of BRISQUE and NIQE used in paper

    Hi, I have run performance tests with the Matlab versions of the NIQE and BRISQUE codes and found deviations from the values reported in the paper. Could you please provide a link to the code you used? thanks a lot~

    solved ✅ 
    opened by xmyhhh 1
  • Update on Replicate demo

    Update on Replicate demo

    Hello again @JingyunLiang :),

    This pull request does a few little things:

    • Updated the demo link with an icon in README as you suggested
    • A bugfix for cleaning temporary directory on cog

    We have added more functionality to the Example page of your model, now you can add and delete to customise the example gallery as you like (as the owner of the page)

    Also, you could run cog push if you like to update the model of any other models on replicate in the future 😄

    opened by chenxwh 1
  • About training and inference time?

    About training and inference time?

    Thanks for your nice work!

    I want to know how much time do you need to train and inference with your models.

    Furthermore, will information about params / FLOPs be reported?

    Thanks.

    solved ✅ 
    opened by TiankaiHang 1
  • RuntimeError: The size of tensor a (20) must match the size of tensor b (40) at non-singleton dimension 3

    RuntimeError: The size of tensor a (20) must match the size of tensor b (40) at non-singleton dimension 3

    Hi, I've encountered the error when I trained the HCFlowNet. I changed my ".png" dataset to ".pklv4" dataset. I was trained on the platform of windows 10 with 1 single GPU. Could you please help me find the error? Thanks a lot.

    opened by William9Baker 0
  • How to build an invertible mapping between two variables whose dimensions are different ?

    How to build an invertible mapping between two variables whose dimensions are different ?

    Maybe this is a stupid question, but I have been puzzled for quite a long time. In the image super-resolution task, the input and output have different dimensions. How to build an invertible mapping between them? I notice that you calculate the determinant of the Jacobian, so I thought the mapping here is strictly invertible?

    opened by Wangbk-dl 0
  • How to make an invertible mapping between two variables whose dimensions are different ?

    How to make an invertible mapping between two variables whose dimensions are different ?

    Maybe this is a stupid question, but I have been puzzled for quite a long time. In the image super-resolution task, the input and output have different dimensions. How to build such an invertible mapping between them ? Take an example: If I have a low-resolution(LR) image x, and I have had an invertible function G. I can feed LR image x into G, and generate an HR image y. But can you ensure that we could obtain an output the same as x when we feed y into G_inverse?

    y = G(x) x' = G_inverse(y) =? x

    I would appreciate it if you could offer some help.

    opened by Wangbk-dl 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • Why NLL is negative during the training?

    Why NLL is negative during the training?

    Great work! During the training process, we found that the output NLL is negative. But theoretically, NLL should be positive. Is there any explanation for this?

    opened by IMSEMZPZ 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023