Neural network pruning for finding a sparse computational model for controlling a biological motor task.

Overview

MothPruning

Scientific Overview

Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for modeling complex systems. DNNs are used in a diversity of domains and have helped solve some of the most intractable problems in physics, biology, and computer science. Despite their prevalence, the use of DNNs as a modeling tool comes with some major downsides. DNNs are highly overparameterized, which often results in them being difficult to generalize and interpret, as well as being incredibly computationally expensive. Unlike DNNs, which are often trained until they reach the highest accuracy possible, biological networks have to balance performance with robustness to a noisy and dynamic environment. Biological neural systems use a variety of mechanisms to promote specialized and efficient pathways capable of performing complex tasks in the presence of noise. One such mechanism, synaptic pruning, plays a significant role in refining task-specific behaviors. Synaptic pruning results in a more sparsely connected network that can still perform complex cognitive and motor tasks. Here, we draw inspiration from biology and use DNNs and the method of neural network pruning to find a sparse computational model for controlling a biological motor task.

In this work, we use the inertial dynamics model in [2] to simulate examples of M. sexta hovering flight. These data are used to train a DNN to learn the controllers for hovering. Drawing inspiration from pruning in biological neural systems, we sparsify the network using neural network pruning. Here, we prune weights based simply on their magnitudes, removing those weights closest to zero. Insects must maneuver through high noise environments to accomplish controlled flight. It is often assumed that there is a trade-off between perfect flight control and robustness to noise and that the sensory data may be limited by the signal-to-noise ratio. Thus the network need not train for the most accurate model since in practice noise prevents high-fidelity models from exhibiting their underlying accuracy. Rather, we seek to find the sparsest model capable of performing the task given the noisy environment. We employed two methods for neural network pruning: either through manually setting weights to zero or by utilizing binary masking layers. Furthermore, the DNN is pruned sequentially, meaning groups of weights are removed slowly from the network, with retraining in-between successive prunes, until a target sparsity is reached. Monte Carlo simulations are also used to quantify the statistical distribution of network weights during pruning given random initialization of network weights.

For more information, please see our paper [1].

This is an image!

Project Description

The deep, fully-connected neural network was constructed with ten input variables and seven output variables. The initial and final state space conditions are the inputs to the network: i, i, i, i, i, i, f, f, f, and f. The network predicts the control variables and the final derivatives of the state space in its output layer: x, y, , f, f, f, and f.

After the fully-connected network is trained to a minimum error, we used the method of neural network pruning to promote sparsity between the network layers. In this work, a target sparsity (percentage of pruned network weights) is specified and the smallest magnitude weights are forced to zero. The network is then retrained until a minimum error is reached. This process is repeated until most of the weights have been pruned from the network.

The training and pruning protocols were developed using Keras with the TensorFlow backend. To scale up training for the statistical analysis of many networks, the training and pruning protocols were parallelized using the Jax framework.

To ensure weights remain pruned during retraining, we implemented the pruning functionality of a TensorFlow built toolkit called the Model Optimization Toolkit. The toolkit contains functions for pruning deep neural networks. In the Model Optimization Toolkit, pruning is achieved through the use of binary masking layers that are multiplied element-wise to each weight matrix in the network.

To be able to train and analyze many neural networks, the training and pruning protocols were parallelized in the Jax framework. Jax however does not come with a toolkit for pruning, therefore pruning by way of the binary masking matrices was coded into the training loop.

Installation

Create new conda environment with tools for generating data and training network (Note that this environment requires a GPU and the correct NVIDIA drivers).

conda env create -f environment_ODE_DL.yml

Create kernelspec (so you can see this kernel in JupyterLab).

conda activate [environment name]
python -m ipykernel install --user --name [environment name]
conda deactivate

To install Jax and Flax please follow the instructions on the Jax Github.

Data

To use the TensorFlow version of this code, you need to gerenate simulations of moth hovering for the data. The Jax version (multi-network train and prune) has data provided in this repository.

cd MothMachineLearning/Underactuated/GenerateData

and use 010_OneTorqueParallelSims.ipynb to generate the simulations.

How to use

The following guide walks through the process of training and pruning many networks in parallel using the Jax framework. However, the TensorFlow code is also provided for experimentation and visualization.

Step 1: Train networks

cd MothMachineLearning/Underactuated/TrainNetwork/multiNetPrune/

First we train and prune the desired number of networks in parallel using the Jax framework. Choose the number of networks you wish to train/prune in parallel by adjusting the numParallel parameter. You can also define the number of layers, units, and other hyperparameters. Use the command

python3 step1_train.py

to train and prune the networks in parallel.

Step 2: Evaluate at prunes

Next, the networks need to be evaulated at each prune. Use the command

python3 step2_pruneEval.py

to evaluate the networks at each prune.

Step 3: Pre-process networks

This code prepares the networks for sparse network identification (explained in the next step). It essentially just reorganizes the data. Open and run step3_preprocess.ipynb to preprocess, making sure to change modeltimestamp and the file names to the correct ones for your run.

Step 4: Find sparse networks

This codes finds the optimally sparse networks. For each network, the most pruned version whose loss is below a specified threshold (here 0.001) is kept. For example, the image below is a single network that has gone through the sequential pruning process and the red line specifies the defined threshold. For this example, the optimally sparse network is the one pruned by 94% (i.e. 6% of the original weights remain).

This is an image!

The sparse networks are collected and saved to a file called sparseNetworks.pkl. Open and run step4_findSparse.ipynb, making sure to change modeltimestamp and the file names to the correct ones for your run.

Note that if a network does not have a single prune that is below the loss threshold, it will be skipped and not included in the list of sparseNetworks. For example, if you trained and pruned 10 networks and 3 did not have a prune below a loss of 0.001, the list sparseNetworks will be length 7.

References

[1] Zahn, O., Bustamante, Jr J., Switzer, C., Daniel, T., and Kutz, J. N. (2022). Pruning deep neural networks generates a sparse, bio-inspired nonlinear controller for insect flight.

[2] Bustamante, Jr J., Ahmed, M., Deora, T., Fabien, B., and Daniel, T. (2021). Abdominal movements in insect flight reshape the role of non-aerodynamic structures for flight maneuverability. J. Integrative and Comparative Biology. In revision.

Owner
Olivia Thomas
Physics graduate student at the University of Washington
Olivia Thomas
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023